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Evaluation of Feeder Monitoring Parameters for
Incipient Fault Detection Using

Laplace Trend Statistic
Charles J. Kim, Member, IEEE, Seung-Jae Lee, Member, IEEE, and Sang-Hee Kang, Member, IEEE

Abstract—This paper focuses on a systematic and cumulative
statistical approach for identifying symptom parameters of incip-
ient faults in distribution feeders. The proposed method aims at
providing a tool for evaluating and identifying the best and highly
correlated parameters to the faults so that they could be used for
incipient fault detection and feeder condition monitoring. The
Laplace test statistic is adopted for trend analysis of the event log
of candidate parameters and applied to actual feeder event data
for online detection and monitoring purposes.

Index Terms—Condition monitoring, hazard function, incipient
fault, Laplace test statistic, trend analysis.

I. INTRODUCTION

OVERHEAD power distribution systems use a variety of
components to deliver power to customers. Various types

of insulating devices such as insulators, fused cutouts, and light-
ning arrestors are used to mechanically connect energized con-
ductors to poles while keeping these conductors electrically iso-
lated, or insulated, from the poles. The failure of equipment in
power distribution systems can have direct or indirect impact on
the reliable delivery of electricity. Also, certain failures can re-
sult in loss of service.

Even though the majority of the distribution equipment
failures are caused by natural degradation, distribution systems
experience faults for a variety of reasons. Some faults are
precipitous, and others gradual. The faults that are caused by
accidents or severe weather are random and unpredictable,
so they are called “unpredictable faults.” Others, however,
occur when damage or contamination progressively weakens
the distribution equipment of its integrity over time. These
faults, called “incipient faults,” are caused by degradation of
equipment, and, theoretically, are predictable or avoidable if
the degradation process and the means to monitor it are known.
The incipient faults are less acceptable to customers because
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the faults occur when the public does not expect interruptions in
service. Hence, a strategic and well-organized method to detect
incipient faults would be of great importance for maintaining a
reliable system.

To meet the high expectation of customers on feeder relia-
bility, utility companies have investigated and invested in de-
tecting incipient faults and monitoring feeder status so that they
can alert repair crews before an imminent fault causes customer
service interruption [1], [2]. Several studies have focused on the
condition monitoring of various pieces of equipment such as
circuit breakers, transformers, underground power cables, and
insulators [3]–[11]. Most of such efforts are centered on the
“single-cause” scheme that, with known symptoms of a type
of failure, attempts to sort out the fault by analyzing the mon-
itored data. Considering, however, that there are hundreds of
different pieces of equipment in different statuses undergoing
different failures and faults in a distribution feeder, it is not
very surprising that studies of the single-cause scheme on dis-
tribution incipient fault detection have reported only limited
performance. A project sponsored by the Electric Power Re-
search Institute (EPRI) concerning a distribution fault antici-
pator/locator, launched with objects to reduce labor costs and
crew time through faster identification of faults and to decrease
outages through detection of incipient faults, has yet to isolate
the symptom parameters [12].

Substation-based monitoring could be better utilized if a
“multicause” scheme is applied in which a cumulative feeder
condition is extracted from the monitored data. However, even
this scheme poses one fundamental question: how can the
decisive parameter be extracted or selected from the monitored
data that cumulatively reflects the feeder status and incipient
faults? This task is challenging, especially when there is no
history or knowledge of the parameter–cause relationship of a
feeder and when there are too many candidate parameters to be
considered.

The objective of this paper is to propose a multicause, trend
statistic method which, by analyzing the parameters of moni-
tored data and the Supervisory-and-Control-and-Data-Acquisi-
tion (SCADA)-based fault log of a feeder, evaluates the param-
eters and identifies the optimal one for a feeder condition indi-
cator and incipient fault anticipator.

In the next section, we discuss the rationale of incipient fault
detection and the parameter evaluation. Section III compares a
few statistical trend analysis methods. The lengthy Section IV
reports the application of the Laplace statistic on actual mon-
itored data for parameter evaluation. Section V concludes the
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paper and briefly discusses the impact of the proposed approach
in other science and engineering areas.

II. INCIPIENT FAULT DETECTION AND PARAMETER

EVALUATION

Detection of faults before they actually occur is a critical ele-
ment of securing high reliability of a distribution system. How-
ever, prediction of an imminent fault has been a challenge for
engineers and scientists in the field of diagnosis and analysis of
failure trends. When some distribution equipment begins to de-
teriorate, intermittent incipient faults persist in the system from
as short a time as several days to as long as several months. In
this scenario, the characteristic behavior would manifest itself
progressively during the incipient phase, leading to a fault con-
dition.

The main principle of failure prediction and incipient fault
detection, therefore, centers on monitoring the distribution line
and discriminating the signatures (or symptoms) of faults in a
feeder before breakdown or breakout.

When the symptom parameters are known and measurable,
and their correlation with actual failure is determined, the
failure prediction problem reduces to simple parameter moni-
toring. However, since an exact failure process of equipment
or a system is usually not completely known, most failure pre-
diction problems are in either or in between the following two
cases: partially known symptom parameters with a fragment
of actual failure history data and totally unknown symptom
parameters with no available failure history data.

Hence, it would be the first step to monitor and analyze the
trend of the partially known parameters with actual faults. In
this scenario, as depicted in Fig. 1, the feeder condition moni-
toring and incipient fault detection executes a closed-loop op-
eration that involves parameter processing, SCADA-generated
fault log analysis, and the characteristic parameter identification
by matching the “event” log of the parameter with the fault log.
The term “event” here indicates some abnormal activity or value
that, when occurring repeatedly, eventually leads to a fault.

The whole process of parameter evaluation and identification
parallels the incipient fault detection activity, which monitors
the parameter identified by the “evaluation and identification”
process. When a new and different parameter is found that better
matches the trend of the event/fault log, then the new parameter
would replace the previous parameter, and the detection activity
resumes with the substitute. This feedback process assures that
the incipient fault detection and feeder condition monitoring can
run, even under changed environment of loads and terrains, with
the most relevant, cumulative characteristic parameter.

The scope of the investigation of this paper is focused on
the parameter evaluation and identification of the closed-loop
process. As depicted in Fig. 2, the paper proposes an approach
of “timed event” trend statistic concept to provide a systematic
tool for evaluating and identifying detection parameters so that
the best and highly correlated parameter(s) of a feeder could be
used for incipient faults and condition monitoring.

Unlike regular trend analysis that relies on “time-averaged”
events over a period of time, the “timed event” statistic focuses
on the rate of the occurrence of the event. In fault anticipation,

Fig. 1. Continuous loop for incipient fault detection by parameter evaluation
and identification.

Fig. 2. Optimal detection parameter identification using event log and trend
statistic.

when the events occurred in a given period of time is more im-
portant than what the average number of events is: the trend of
the event occurrence is more meaningful since repeated events
lead to a catastrophic fault [13]. The next section discusses sta-
tistical trend analysis methods of events.

III. TREND ANALYSIS METHODS OF EVENT LOG

Observing the behavior of several candidate parameters and
finding which one shares the failure trend and can be used to
monitor is not an easy task. When a statistical method for re-
lating the behavior of parameters and imminent fault fails, it is
mainly because of the unknown or incompletely known parame-
ters. With partially known or totally unknown symptom param-
eters, even a sound approach achieves only partial success. An-
other cause for partial success in the statistical approach could
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be found in the inappropriate application of statistical measures.
For example, using such measures of symptom parameters as
the number of activities (“event”) or the time-averaged events
over a time period does not always successfully indicate the
trend of the system under investigation.

A better measure for indicating an increasing or decreasing
trend is “inter-arrival” times over a period of time, and one of the
better-known approaches is the Weibull distribution and hazard
function model [13]. The inter-arrival event analysis on candi-
date parameters, by fitting the events to the model, can deter-
mine which parameters are the precursors of the faults.

On the other hand, a new method of trend analysis, timed-
event analysis, highlights the time location of the event occur-
rence. The information of the time location of the event occur-
rence eliminates certain candidate parameters: if the time loca-
tion of the parameter is the same for a period of time, the event
is caused by random acts, therefore, the parameter is eliminated
from the symptom parameter candidates.

A brief discussion on the Weibull hazard model and the time-
event Laplace test statistic follows.

A. Inter-Arrival Event and Weibull Hazard Function

Failure distribution mathematically characterizes the proba-
bility of system failures as a function of time. The Weibull func-
tion is well known in failure analysis, and is defined by

with and (1)

where is the shape parameter and is the scale parameter.
On the other hand, the Weibull hazard function indicates a

time-varying failure rate and is defined by

(2)

The shape parameter directly controls the hazard function
and indicates the trend of the failure. The interpretation of the
shape parameter is as follows [14]:

• , the failure rate is increasing with time;
• , the failure rate is constant with time;
• , the failure rate is decreasing with time.

The application of the Weibull hazard function for param-
eter selection begins with the analysis of the inter-arrival times
of the events of the parameters. The “event,” again, could be
any change in magnitude of the parameters distinguishable from
nominal behavior of the parameters, but not a fault or failure.
The inter-arrival time stamps are marked by calculating the dif-
ference between the occurrence of each event and the time in-
terval of two successive events, and by formulating the hazard
function.

To estimate and , nonlinear fitting technique or regression
analysis is usually applied with selected initial values. In the
nonlinear curve-fitting case, the chi-square ( ) goodness of fit
is measured to evaluate the fit of the hazard function to the ob-
served inter-arrival data. Usually, 95% confidence of the fit re-
quires that be less than 0.05. However, there is a practical
problem in the hazard function approach: sometimes, the is
not reduced to the critical value of 0.05, no matter how many

Fig. 3. Arrival time illustration ofm events.

rounds of iterations are performed [14]. The disadvantage of
the hazard function approach is illustrated in the actual event
log analysis in Section IV.

B. Timed-Event and Laplace Trend Test

If an event is caused by unpredictable incident such as acci-
dent or lightning, such event will occur at a constant or random
rate., or, it will never reoccur. On the other hand, if an event is
a precursor of an incipient fault, then such event by nature will
occur more frequently, and the time to the next occurrence will
likely be shorter. The Laplace trend statistic is a simple and pow-
erful tool for distinguishing between a constant rate at which
events are occurring and an increasing rate of occurrence of such
events.

Consider a situation where a fault occurred at time and
events have been observed over an interval of length , where
the origin is designated as time zero (0). The total events are
indistinguishable, caused by unpredictable or incipient faults,
and their arrival times are designated as as illus-
trated in Fig. 3.

Then, the Laplace test statistic ( ) is defined by

(3)

The Laplace test statistic has the following very simple inter-
pretation. Under the assumption of constant rate of occurrence,
the arrival times to faults, i.e., ’s would be uniformly dis-
tributed over the interval (0, ), or randomly scattered around
the midpoint of the interval . Therefore, the sample mean of
the ’s would be approximately equal to , and would
approximately become a normal distribution with mean 0 and
variance 1 [14], [15].

When the events are occurring more frequently toward the
end of the interval , however, the sample mean becomes
bigger. Therefore, a test statistic of events that exceeds a certain
threshold could be interpreted to foretell that there is a trend
supporting that the events are the precursors of the (incipient)
fault. The threshold for supporting trend of fault is determined
in terms of the value of the standardized normal distribution
for a chosen level of confidence ( ), . The value of
the standardized normal distribution for 95% confidence level
( ) is 1.96. The Laplace test statistic above the positive
threshold value then indicates an increasing possibility of im-
minent fault, and one below the threshold, no positive trend to
a fault. Therefore, a parameter for which events are measured
and the Laplace trend results in higher than the threshold value
of 1.96 could be selected as a precursor, symptom parameter of
a fault.

To improve the test statistic performance for a small sample
size of events, an adjusted Laplace test statistic was suggested
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in [16] which is also approximately standard Gaussian distribu-
tion. The adjusted test statistic ( ) is obtained by multiplying
the mean ( ) by the original test statistic ( ) and by dividing
the result by the standard deviation ( ) of the timed event

(4)

The threshold value based on the value applies to both the
original and the adjusted Laplace trend statistics.

Overall, the Laplace trend test is very useful for pinpointing
which parameter of event has a positive trend with an actual
fault. Since most distribution faults are due to incipient failure
of the distribution equipment, the use of the Laplace test statistic
helps to decide which parameters to monitor for predictive dis-
tribution maintenance.

IV. A CASE STUDY FOR PARAMETER IDENTIFICATION

We applied the approach of the Laplace test statistic to the
feeder event logs recorded in July and August 1996 and De-
cember 1996–February 1997. The data were originally acquired
at an unmanned substation of Korea Electric Power Corpora-
tion (KEPCO) for a rural 12-kV feeder [17]. A summary of the
“event” and the event log follows.

A. Feeder Log

1) Feeder Monitoring: The rural feeder in the substation had
registered more faults than others and that was the reason it was
selected as a test feeder for KEPCO’s long-term research on
feeder health monitoring. Feeder data were monitored for all
three-phase voltages and currents and the neutral current using
a data acquisition module with sampling rate of 3840 samples
per second.

The difficulties in frequent access to the remotely located sub-
station and the limited size of memory of the data acquisition
workstation forced the recording crew to adopt a rather risky
but sound monitoring practice: they decided to record twice a
day for only 1 min at each time. The first recording time of day
was set at 5:00 A.M.. The theory behind this was that most of the
faults in the feeder had been involved with failures of insulators,
and the early morning time roughly fitted the dew point hour
at which the surfaces or connections of the distribution equip-
ment were finely moisturized and believed to be accelerated in
the failure process, so this would increase the chances of de-
tecting abnormal activities of failing devices in the feeder [18].
The second recording time, 5:00 P.M., was selected to see the
behaviors under full loading conditions.

Actually, the monitoring turned out to be quite successful as
long as this investigation of failure trend is concerned: the data
were good enough to show and connect the events with actual
faults.

2) Feeder Fault Log: Tables I and II report the fault occur-
rences for the July and August 1996 and December 1996–Feb-
ruary 1997 periods, respectively. These logs are drawn from
SCADA-generated data with the following fault classification: a
fault whose cause is known and involved with a device is classi-
fied as an “incipient fault,” and all other faults as “unpredictable
faults.” For purposes of this investigation, the reported faults of

TABLE I
FAULT LOG OF JULY 1–AUGUST 4, 1996 PERIOD

TABLE II
FAULT LOG OF DECEMBER 26,1996–FEBRUARY 22, 1997 PERIOD

the periods are numbered. The “Arrival Time” indicates the fault
occurrence day counted from the start day of each monitoring
period.

3) Parameter Extraction: The initial screening, after the
processing of the acquired data in time and frequency domains
and the elimination of the unchanging (or not responding to
faults) parameters over the monitoring period, reduced the
candidate parameters to four. The four candidate parameters
were named as follows:

• AN—nonharmonic component of neutral current col-
lected at 5:00 A.M.;

• AH—high-frequency (above 1 kHz) component of neutral
current collected at 5:00 A.M.;

• PN—nonharmonic component of neutral current collected
at 5:00 P.M.;

• PH—high-frequency (above 1 kHz) component of neutral
current collected at 5:00 P.M..

Because of data acquisition problems, the “AH” and “PH”
parameters were not collected for the first several days of the
first observation period and for the last 30 days of the second
period.

4) Event Log: The “event” of the parameters is specified as
follows. A symptom parameter is believed to show a relatively
high degree of random variation in magnitude when a failure
process is accelerated, therefore, the degree of magnitude vari-
ation over a period of time could be used to indicate feeder ac-
tivity or condition. In this context, the index of variation in mag-
nitude over a daily average determines if there were an “event”
or not: an “event” occurred if the index were above a certain
threshold, and “no event,” if below the threshold.

The event logs, shown in Tables III and IV, report the “event”
occurrence dates (in terms of arrival times from the start of each
monitoring period) for each parameter for each monitoring pe-
riod. The last rows of the tables combine the fault logs of Ta-
bles I and II by the fault class: “IF” for incipient fault and “UF”
for unpredictable fault.

B. Weibull Hazard Function Application

To apply the Weibull hazard function application to the event
log, we first convert the “events” to the “inter-arrival events,”
i.e., average time between two events before a fault. The result is
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TABLE III
EVENT LOG OF JULY 1–AUGUST 4, 1996 PERIOD

TABLE IV
EVENT LOG OF DECEMBER 26,1996–FEBRUARY 22, 1997 PERIOD

Fig. 4. Inter-arrival distribution and nonlinear fit for AN parameter.

a distribution (or histogram) of the number of occurrences of the
inter-arrival times. The axis divides the inter-arrival times into
1-day bins, while the axis shows the number of occurrences.
Figs. 4 and 5 display the histograms for AN and AH parameters,
respectively.

Then, a nonlinear parametric fit is applied to find the shape
and scale for the distribution. In Fig. 4, along with the histogram,
the best-fit Weibull hazard function is plotted which approxi-
mates and the chi-square goodness-of-fit .
The shape with 0.17 shows the negative trend of the distribution
and, further, the of 2.42 is far away from 0.05 to give enough
confidence of the fitting.

Similarly, AH’s best fit curve in Fig. 5, with and
, does not give enough confidence to believe the shape

and the hazard function are right for the “fitted” hazard function.
Conclusively, particularly when samples are small, the

Weibull hazard function is not appropriate for the trend analysis
of events for parameter evaluation.

C. Application of Laplace Test Statistic

In the application of the Laplace test statistic, we analyze the
event log, along with the fault log, in two different perspectives.

Fig. 5. Inter-arrival distribution and nonlinear fit for AH parameter.

The first one is to analyze the event log in a way that each fault
recorded is an independent fault, i.e., a fault is caused by a spe-
cific cause and, thus, it can be cleared by removing the cause.
In this perspective, once the fault-causing device is replaced by
a healthy one, the distribution feeder is supposed to return to
normal status. We call this a “single-cause repairable system.”
Under the single-cause repairable system approach, we focus
only on the events reported before a fault, and, thus, the anal-
ysis of the trend of the events tells only of that specific fault.
Similarly, any events reported before a fault should not be in-
cluded in the trend analysis of the events for another fault.

The other point of view is to consider faults as being not in-
dependent: faults are caused by multiple causes from numerous
pieces of distribution equipment that are undergoing failure pro-
cesses. The events then contain more than one cause. In this
second view, even after a fault is reported and a faulty device is
replaced or corrected, the distribution system is not clear of the
failure processes of other devices. We call this a “multicause re-
pairable system.” In the multicause repairable approach, all the
events before any fault are included in the trend analysis of the
fault. Therefore, the trend analysis for the first fault in the moni-
toring period includes only the events before the fault; however,
that for the last fault includes all the events of the period.

1) Single-Cause Repairable System Approach: In this ap-
proach, only the events occurring before a fault are used for a
trend analysis for the fault. This approach generates a Laplace
test statistic for each fault of the periods. However, since the
faults F3, F4, and F5 are adjacent, and, moreover, since F4 and
F5 do not have enough event recordings, F4 and F5 are not in-
cluded in the analysis of the Laplace test statistic. The unpre-
dictable faults (F6, F7, and F8) also are omitted from this anal-
ysis. In addition, not all parameters are analyzed for the test
statistic since some parameters could not be extracted for a cer-
tain segment of the monitoring periods. Prominently, high-fre-
quency parameters (AH and PH) were not sampled, particularly,
before the faults F9 and F10.

The following illustrates in detail the derivation of the
Laplace test statistics. First, for each fault, we derive the
number of events ( ), the time interval between the first event
and the last event before a fault ( ), and the arrival time of each
event ( , ), for each parameter. Then, applying
the statistic equation, we find the for each parameter for the
faults. The elements for the three faults of the first period are
displayed along with the Laplace test statistics in Table V.
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TABLE V
ELEMENTS FOR LAPLACE TEST STATISTICS CALCULATION FOR THE FAULTS

OF THE FIRST PERIOD

TABLE VI
LAPLACE TEST STATISTICS FOR THE INCIPIENT FAULTS

A similar process for F9 and F10 produces the Laplace sta-
tistics for the faults of the second period. Finally, we have the
Laplace statistics for five incipient faults as shown in Table VI.
Since the number of events is comparatively small, the adjusted
statistics ( ) are also calculated.

The Laplace statistic table reveals that there is no single pa-
rameter that has a higher statistic value ( ) than the cutoff line
for a positive trend (i.e., 1.96) for any of the five incipient faults.
In other words, there is no parameter positively related to the
faults. The adjusted statistic ( ), however, picks the AH as
one of the better symptom parameters. This poor result, caused
partly by the small event size, leads to the second approach.

2) Multicause Repairable System in Expanded-Window Ap-
proach: A typical distribution feeder has hundreds of pieces
of equipment. Since they have been in service for varying pe-
riods of time, they are in various states of health or integrity.
At any one point in time, dozens or scores of them are at some
stage of incipient failure and one or a few of them reach the
point of flashover and fault. However, soon after, others will
reach the point of failure in due course. Therefore, even after
the source of a particular fault is located and repaired, the mea-
surable characteristic (the “event”) may persist in the system.
Hence, an event occurring just before a fault may be a precursor
of a fault that will come much later. The multicause repairable

TABLE VII
LAPLACE TEST STATISTICS FOR THE INCIPIENT FAULTS UNDER MULTICAUSE

REPARABLE SYSTEM APPROACH.

Fig. 6. Tracings of the Laplace statistics for the first period.

system approach for a fault, therefore, includes all the events oc-
curring before the fault. The investigation of the approach leads
to the following recalculation of the statistics.

Under this scheme, the faults F4 and F4 can be included.
However, in the second monitoring period, parameters AH and
PH are not considered, mainly by the lack of event points. Since
there are enough numbers of events for most faults, the adjusted
statistics are not calculated. Table VII summarizes the test sta-
tistics under the multicause reparable system approach.

The parameters with higher Laplace statistics than the 1.96
cutoff line finally emerge from the multicause approach: they
are AH and PH. The other two parameters, which report more
events during the monitoring periods, show no positive trend
with the incipient faults.

In addition to the parameter identification by the “offline” ap-
proach using the event log of a period, we try to expand the
scheme of the multicause reparable system approach to a daily
reporting of the statistic as an index for online feeder health
conditions. In this scenario, unlike in the regular multicause
approach where statistics are calculated only when faults are
reported, they are calculated at each event, using all the pre-
vious events reported. The statistics generated from this online
scheme could be used to alert the crew to an imminent fault.

Fig. 6 shows the tracing of the Laplace statistics of the param-
eters for the first period. All five faults are also indicated on the
1.96 cutoff line. The statistic traces of parameters AH and PH
show that they climb up above the 1.96 line a few days before
the actual faults.
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This expansion further illustrates that the approach of using
the Laplace test statistics, in addition to being a great potential
as a symptom parameter identifier for incipient fault detection,
could be used as an anticipator for feeder status and imminent
faults.

V. CONCLUSION

A Laplace trend analysis was applied to isolate parameters
for incipient faults in a distribution system. Four parameters of
actual event logs of two separate monitoring periods, along with
SCADA-generated fault log, were examined using the Laplace
test statistic. The investigation reported the effectiveness of the
statistic as a symptom parameter identifier for incipient fault
detection, and illustrated that the approach of the Laplace test
statistics could be used as an online anticipator for feeder status
and imminent faults. The methodology proposed in the paper
without any modification can be applied to many other failure-
physics-related area such as material failure prediction, lifetime
prediction, failure anticipation of computing devices, and other
mission-critical applications.
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