
Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

260

Chapter 10. Synchronous Serial Communication and Keyboard Connection

1. Synchronous Communication

As its name implies, synchronous communication takes place between a transmitter and a
receiver operating on synchronized clocks. In a synchronous system, the communication partners
have a short conversation before data exchange begins. In this conversation, they align their
clocks and agree upon the parameters of the data transfer, including the time interval between
bits of data. Any data that falls outside these parameters will be assumed to be either in error or a
placeholder used to maintain synchronization. (Synchronous lines must remain constantly active
in order to maintain synchronization, thus the need for placeholders between valid data.) Once
each side knows what to expect of the other, and knows how to indicate to the other whether
what was expected was received, then communication of any length can commence.

Even though 16F877's USART module provides hardware enabled synchronous master/slave
mode of serial communication, we opt to a software enabled approach. It's because the built-in
serial port will be connected to a host PC for hex code download. Of course, that same port can
be used for other serial device, it would be cumbersome to connect and disconnect a code.
Moreover, we will connect another serial device, like a keyboard or mouse, in the example of
this chapter, therefore, software approach will give us more freedom of adding additional serial
device.

An application of this chapter is to connect a keyboard (eventually two keyboards) and one LCD
to the 16F877 in order to let two persons of hearing or speaking disability communicate by
typing and reading. The keyboard we are going to connect is the most common type, IBM AT
or PS/2 keyboard. The keyboard communicates with PC in synchronous serial communication.

AT type keyboard has 5 pins while PS/2 type keyboard has 6 pins. As illustrated below, for both
types of keyboard, there are total 4 signals: +5V power signal, ground, and a CLOCK line, and a
DATA line.

Fig. 75 PS/2 and AT type keyboard

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

261

2. IBM AT- or PS/2 – type Keyboard Protocol

The protocol between the keyboard and PC is the most important subject we have to understand
in our example application.

The PS/2 mouse and keyboard implement a bidirectional synchronous serial protocol. The bus is
"idle" when both lines are high (open-collector). This is the only state where the
keyboard/mouse is allowed begin transmitting data. The host has ultimate control over the bus
and may inhibit communication at any time by pulling the Clock line low.

The keyboard always generates the clock signal. This is done by a keyboard controlling
microcontroller inside the keyboard.

The Data and Clock lines are both open-collector with pull-up resistors to +5V. An "open-
collector" interface has two possible state: low, or high impedance. In the "low" state, a
transistor pulls the line to ground level. In the "high impedance" state, the interface acts as an
open circuit and doesn't drive the line low or high.

The first thing we have to know is how the keyboard controller chip send data to a host (PC or
17F877 in our case). As mentioned above there are two signals from the keyboard: CLOCK and
DATA. DATA is sent only when synchronized with the CLOCK. When the keyboard is idle,
without any key pressed, both CLOCK and DATA are remained pulled up High. When a key is
pressed in the keyboard, both the CLOCK pulse and DATA pulse are transmitted from the
keyboard. Through the DATA, strings of byte data are generated. The clock pulses are
generated during the data transmission through the CLOCK line.

 One thing we have to remember is that a single key stroke does not generate only a byte of data:
it generates usually 3 bytes of data and, but other keys generate 5 bytes of data. The list of byte
data generated by each individual key is called Keyboard Scan Codes. This discussion follows.

Let's continue our discussion on keyboard protocol. A byte data from the keyboard is sent in a
frame consisting of 11 bits. The frame consists, in the following order, of:

1 Start bit (Low),
8-bit data (LSB first, as usual),
1 Odd Parity bit, and
1 Stop bit (High).

The width of the data bit is about 70µs. The frame is synchronized with 11 clock pulses of 70µs
with about 40% duty cycle. Namely, the clock pulse's width is 70µs and it's High is about 307µs
and its Low for 40µs. As indicated below, a host can sample (or monitor) each bit of the frame
at the falling edge of the clock pulse. If we allow a short transition time of High-to-Low change,
it would be safe to sample after around 5 µs of the High-to-Low transition of the clock.

To read the frame using 16F877, we need two I/O ports configured as inputs for CLOCK and
DATA lines. First we monitor the CLOCK line for transition from High to Low. When it

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

262

changes to Low, after 5 µs, we read the DATA line for each bit. Once a bit is read, now we back
to the CLOCK monitoring. The CLOCK must go back to High and do the High-to-Low
transition for the next bit reading. This process goes for all 11 bits of a frame. Since the 8-bit
byte is sent LSB first, as soon as each bit of the byte is read, it must be rotate to the right by one
to make a regular byte format: MSB to LSB.

Before we further proceed to the Keyboard Scan Codes, let's have a 16F877 connection with a
standard AT or PS/2 keyboard. CLOCK line is connected to RB7 and DATA line to RB6 as
illustrated below.

Fig. 76 PIC 16F877 connection to PS/2 Keyboard

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

263

Then, let's build a subroutine to read the 11-bit frame: the basic building block of keyboard
reading. As explained above, reading each bit is based on the monitoring of the CLOCK line
(RB7) of the High-to-Low transition. Since there are chances that the monitoring would be in
the middle of the frame transmission, we may want to have a short High CLOCK before we
allow to receive a frame. The subroutine, RX11bit, is listed below with ample amount of
comments. In the subroutine, we keep the Parity bit for later use of transmission parity check.
Also, an unknown transmission error is recorded when the last bit (STOP) is not High. The 8-
bit data, after the subroutine, is stored in the file register of DATAreg.

;SUBROUTINE RX11bit ===
;RX Routine for 11-bit frame read
;1 Start
;8 Data (LSB first)
;1 Parity (Odd)
;1 Stop (HIGH)
;KSTAT Bit Info: KSTAT<0> : parity KSTAT<2>:KBD Error
;
RX11bit

clrf DATAreg
banksel PORTB

;Let it have at least 200us CLOCK high period
btfss PORTB, CLOCK
goto RX11bit ;if CLOCK is LOW, start again
call Delay100us ;200uS delays
call DElay100us

;check again for CLOCK
btfss PORTB, CLOCK
goto RX11bit

;READY TO MONITOR CLOCK of H-to-L TRANSITION
Scheck

btfsc PORTB, CLOCK
goto Scheck

;CLOCK pulse is LOW
call delay5us ;wait for 5us for data stabilization
btfsc PORTB, KDATA
goto KERROR ;if START BIT is not Zero ERROR

;START Detected
;8-bit Data Check

movlw 0x08
movwf Bitcount ;Read 8 times for 8-bit Data

RXNEXT
bcf STATUS, CARRY ;Clear the Carry Bit
rrf DATAreg ;rotate to the right

CKHIGH
btfss PORTB, CLOCK ;Wait for CLOCK to back to High
goto CKHIGH

CKLOW btfsc PORTB, CLOCK ;wait for CLOCK now to LOW
goto CKLOW
call delay5us ;5us delay
btfsc PORTB, KDATA ;DATA line reading. 0 or 1
bsf DATAreg, MSB ;1? Then set the MSB
decfsz Bitcount
goto RXNEXT

;Check for Parity Bit
;Wait for CLOCK back to High

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

264

CKHIGH2
btfss PORTB, CLOCK ;Wait for CLOCK to back to High
goto CKHIGH2

CKLOW2
btfsc PORTB, CLOCK ;wait for CLOCK now to LOW
goto CKLOW2
call delay5us ;5us delay
btfsc PORTB, KDATA ;Parity Bit
goto OneP ;Pbit=1
bcf Kstat,0x00 ;Pbit=0
goto Stopcheck

Onep bsf Kstat, 0x00 ;Parity bit=1 flag
Stopcheck
;wait for CLOCK back to High
CKHIGH3

btfss PORTB, CLOCK ;Wait for CLOCK to back to High
goto CKHIGH3

CKLOW3
btfsc PORTB, CLOCK ;wait for CLOCK now to LOW
goto CKLOW3
call delay5us ;5us delay
btfss PORTB, KDATA ;STOP bit
goto KERROR ;if STOP=0 , ERROR
return

KERROR
bsf KSTAT, 0x02 ;ERROR FLAG set
return

As you see from the subroutine, the code is not far from the one we developed for asynchronous
subroutine for data reception. Only difference is, here, we read the data bit by monitoring the
clock transition and this is the essence of the synchronous serial communication. Since we built
the basic building block of a frame read, now we have to look at the Scan Codes of keyboard to
know what codes are transmitted when a key is pressed and released. When a key is pressed, the
keyboard controller transmits one or two 1-byte "Make" code, and when the key is released it
transmits two or three 1-byte "Break" codes.

Most of the keys in a keyboard (Category 1), thus, generate 1 Make code and 2 Break codes,
when they are pressed and released. The first Break code is always F0h, and the second Break
code is the same as the Make code. The Make code is separated from the Break codes only by
how long the key is being pressed. If that key is kept on being pressed, only the 1 Make code
would be continuously generated. However, the two Break codes are separated by about 2ms.

Break code is to know when a key is actually released especially for Shift keys. While a Shift
key is pressed, an 'A' would generate 'A', however, when the Shift key is released, an 'A' would
be interpreted as 'a', instead.

Some keys, like HOME, DEL, Page Up, Page Down, ←,↑ ,→, and ↓ (Category 2), generate two
Make codes and three Break codes. For this group of keys, the first Make code is always E0.
The first two Break codes are E0h and F0h, and the last break code is the same as the second
Make code. Two Make codes are separated by about 700µs. The second Break code comes
700µs later after the first Break code. The last Break code arrives 2ms after the second Break

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

265

code.

The following illustration shows the key specific codes for a keyboard. Category 2 keys are
shaded. There are two keys which are not in either group: Print Screen/Sys Request and Pause
keys. Print Screen key has the following codes, all in hexadecimal numbers (note that key
released point is indicated by a vertical bar (|)): E0, 12, E0, 7C, |, E0, F0, 7C, E0, F0, 12. The
Pause key has only Make codes: E1, 14, 77, E1, F0, 14. More details on Keyboard Scan Code
can found in the Microsoft's Keyboard Scan Code Specification.

Fig. 77 Key Specific Codes for a Keyboard

Therefore, according to the Scan Code illustration, the 'A' without Shift key would produce: 1C |
F0, 1C. On the other hand, if we press left Shift key and holding it until we type and release 'A',
and then release the left Shift key, it would generate the following codes:
12 (Left Shift Make), 1C ('A' Make), | F0 (Break), 1C ('A' Break), | F0 (Break), 12(Left Shift
Break).

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

266

If you keep press the Space bar for a few seconds followed by the release, it would generate the
following codes:
29 (Space Make), 29 (Space Make), 29(Space Make),|, F0 (Break), 29 (Space Break).

On the other hand, if you press the Up Arrow (↑) key and release it, it would generate:
E0, 75(↑ Make), |, E0, F0 (Break), 75 (↑ Break).

3. First Code - Display of the Key Code Sequence

As we just examined the code generation by keys, there are two categories considered in
displaying the codes of the keys on a PC monitor. If the first code from the keyboard (the Make
code) is E0, it belongs to the Category2. In category 2, we have to read at least 5 Make and
Break codes. When the category key is held pressed, the Make code should be read continuously
until a Break is detected. If the first Make code is not E0, it belongs to the Category 1. In
Category, we have to read 3 Make and Break codes in addition to the Make codes when the key
is held pressed. In Category 1, there is one exception: Left and Right Shift Keys. Usually, the
Shift Make code is followed by another Make code of the Category 1 key. Therefore, we must
read 5 Make and Break codes in addition to the repeated Shift Make codes and/or the repeated
Make codes of the Category 1 code.

Before discussing the main part of the code, for key reading and displaying the Make and Break
codes of the key, we briefly study a few subroutines that we have not discussed so far. The 5 µs
delay to read a bit after the High-to-Low transition of the CLOCK pulse, comes simply by
having 10 nop (No Operation) instructions. Each instruction in 20 MHZ clock takes 0.2 µs.

;5us Delay Subroutine
delay5us
;need total 10 insturctions

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
return

The code display subroutine, Kdisplay, is to change 1-byte hex number into 2-digit ASCII
codes, and transmit the ASCII codes via the serial communication module of 16F877. This
subroutine is almost identical to previous Monitor display routine. Only a slight variation and
variable changes has been made caused by the keyboard reading accommodation.

;SUBROUTINE Kdisplay
Kdisplay

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

267

banksel Kreg
movwf Kreg
movf Kreg,0
movwf Ktemp
swapf Ktemp,0 ;SWAP upper and lower nibbles --->W
andlw 0x0F ;Mask off upper nibble

call HTOA ;HEX---->ASCII
movwf DATA1 ;First Digit

movf Kreg,0
andlw 0x0F ;mask of upper nibble

call HTOA ;HEX---->ASCII
movwf DATA2 ;Second Digit

;TX ROUTINE FOR Display

movf DATA1,0
call Txcall ;Serial Transmission to PC monitor
movf DATA2,0
call Txcall ;Serial Transmission to PC monitor

return

One more thing we have to know about keyboard reading is that when the keyboard is powered
up it automatically sends something called BAT (Basic Assurance Test) code which basically
informs the host of the status of itself. Part of the BAT is an initial set-up for the selection of
Brake only, Break/Make code, and Typematic. These pieces of information are generated about
1 second after the power on. So in the code we will examine, we may want to have at least 1
second delay after the power-on reset. The follow example code is to read a keyboard and then
display the key using a PC monitor, by running the hyperterminal at the PC side. No
subroutine is listed in the code.

;kbd1.asm
;
;MAIN FOCUS: DISPLAYING THE KEYS PRESSED on A PC MONITOR
;
;This program is to:
;1. Read At or PS/2 Type Keyboard
;2. Display the Make and Break codes, in HEX format, on PC monitor
;
;
; Baud rate for this is set as 19200 for Monitor display
;
;Keyboard has bi-directional synchronous serial communication
;with clock of LOW period of 30us and High period of 40us
;Data comes with 11 bits:
;1 start bit of Low
;8 data bits (LSB first)
;1 Odd parity bit
;1 Stop bit of High
;

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

268

;Data reading is done when clock goes High-to-Low transition
;
;PIC can block the data from Keyboard by pulling down the clock Low >100ms
;
;
;To leave CLOCK line High-Z, set the port Input
;To make the CLOCK line LOw, set the port as ouput and write 0 to the port.

;
;Algorithm
;1. Check the CLOCK pin (RB7)
;2. When CLOCK goes to LOW, read the DATA line (RB6)
;3. START>8-bit Data>1 Parity>Stop
;4. Display the result
;

;Make /Break format
;(1) (X) | (F0) (X) =================> CAT1
; L-SHIFT followed by a Key: 12 (X) |(F0) (X) |(F0) 12
; R-SHIFT followed by a key: 59 (X) |(F0) (X) |(F0) 59
;(2) (E0)(X) | (E0)(F0) (X) ==========> CAT2
;
;
;Terminal set up: 8N1 19200
;
;Asynchronous mode
;

list P = 16F877

STATUS EQU 0x03
CARRY EQU 0x00
ZERO EQU 0x02
TRISB EQU 0x86
PORTB EQU 0x06
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)
CARRY EQU 0x00
ZERO EQU 0x02
MSB EQU 0x07
CLOCK EQU 0x07 ;from Keyboard
KDATA EQU 0x06 ;from Keyboard

;
;RAM AREA

CBLOCK 0x20
KSTAT
DATAreg

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

269

MAKEreg

BREAKreg1
BREAKreg2
BREAKreg

Sbit
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount100ms
Kount1s
Kount10s
Kount1m
Bitcount ;data bit count
Kount ;Delay count (number of instr cycles for delay)
DATAtemp ;for ASCII conversion
DATA1
DATA2
ASCIIreg
Kreg
Ktemp

ENDC

;===
org 0x0000
GOTO START

;==
org 0x05

;start of the program from $0005
START

banksel TRISB
; 1100 0000

movlw B'11000000' ;RB7 for CLOCK and RB6 for DATA as inputs
movwf TRISB
call ASYNC_mode
call delay1s ;Give Keyboard to send STATUS to the host

;KBD initial set-up by itself
;BAT(Basic Assurance Test) code
;typematic/make/break coding

BEGIN
banksel TXREG
clrf TXREG
banksel DATAreg ;the RX11bit result here
clrf DATAreg
clrf Kreg
clrf ASCIIreg ;ASCII equivalent here
clrf Ktemp

; CHECK IF THE CLOCK is HIGH at least for 100 mS
;to make sure it does not read in the middle of data/clock stream

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

270

banksel PORTB
btfss PORTB, CLOCK
goto BEGIN ;if CLOCK is LOW, start again
call Delay100ms ;100mS delays

;check again for CLCOK
btfss PORTB, CLOCK
goto BEGIN

;READY FOR CLOCK PULSES
;KSTAT
;KSTAT<0>: Parity Bit Value
;KSTAT<2>: Kbd error

clrf KSTAT
KEYIN
;X reading

call RX11bit ;reading a frame

clrf STATUS
movf DATAreg,0 ;Break Code?
xorlw 0xF0
btfss STATUS,ZERO
goto CAT

;BREAK, before MAKE code, detected. Abort It. Resume It
goto BEGIN

;Category detection
CAT clrf STATUS

movf DATAreg,0
xorlw 0xE0
btfsc STATUS,ZERO
goto CAT2
clrf STATUS
movf DATAreg,0 ;L-SHIFT Key Detection
xorlw 0x12
btfsc STATUS,ZERO
goto LRSHIFT
clrf STATUS
movf DATAreg,0 ;R-SHIFT key detection
xorlw 0x59
btfsc STATUS,ZERO
goto LRSHIFT

;L Shift ===>12 | F0 12
;R Shift ===>59 | F0 59

;CAT1 has the format of (X)|(F0)(X)
CAT1 movf DATAreg,0

movwf MAKEreg
call Kdisplay ;(X)

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO

;Key is not broken. Still pressed,
goto CAT1 ;IF No BREAK code, Key is still pressed.

;Key is broken

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

271

movf DATAreg,0
movwf BREAKreg1
call Kdisplay ;F0

;Last (X) reading
call RX11bit
movf DATAreg,0
movwf BREAKreg2
call Kdisplay ;(X)

call CRLF
call CRLF
goto BEGIN ;Read next Key

;CAT2 format (E0)(X)|(E0)(F0)(X)
CAT2 movf DATAreg,0

call Kdisplay ;E0
call RX11bit
movf DATAreg,0
movwf MAKEreg
call Kdisplay ;(X)

; KEY still PRESSED or BROKEN
call RX11bit
movf DATAreg,0
clrf STATUS
xorlw 0xE0
btfss STATUS,ZERO

; NOT BROKEN
goto CAT2

;BROKEN
movf DATAreg,0
call Kdisplay ;E0
call RX11bit
movf DATAreg,0
call Kdisplay ;F0
call RX11bit
movf DATAreg,0
movwf BREAKreg
call Kdisplay ;(X)

call CRLF
call CRLF
goto BEGIN ;Read next Key

;L-SHIT and R-SHIFT has the form
;L-SHIFT and a character 12 X | F0 X |F0 12
;R-SHIFT and a character 59 X | F0 X |F0 59

LRSHIFT
movf DATAreg,0
movwf MAKEreg
call Kdisplay ;12 or 59

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

272

btfsc STATUS,ZERO
goto BEGIN ;IF no BREAK, key is not Broken yet

LRS movf DATAreg,0
movwf BREAKreg1
call Kdisplay ;X

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO
goto LRS
movf DATAreg,0
call Kdisplay ;F0

;Last (X) reading
call RX11bit
movf DATAreg,0
movwf BREAKreg2
call Kdisplay ;(X)

call RX11bit
movf DATAreg,0
call Kdisplay ;(F0)

call RX11bit
movf DATAreg,0
call Kdisplay ;12 or 59
call CRLF
call CRLF
goto BEGIN ;Read next key

;
; SUBROUTINES
;HERE

END
;END OF THE CODE

Try several keys using a keyboard and see if you get the following or similar monitor display.

1. 'Space' Bar press and quick release.
2. 'Space' Bar press and delayed release.
3. 'Shift' and 'L' followed by L release and Shift Release.
4. 'Home' key.

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

273

4. Second Code - Display of Key Itself

The second version of the program is to display the key on the monitor, not the Make and Brake
codes of the key. To do this, we have to closely examine the code of a key and a combination of
keys.

Category 1 Keys (Keypad is ignored)
 Without Shift or Caps Lock With Shift or Caps Lock
 Key Make/Break

Code (hex)
Character to be
Displayed

ASCII
code

Character to be
Displayed

ASCII
code

 ~ ` 0E ` (Apostrophe) 60 ~ (Tilde) 7E
 !1 16 1 31 ! 21
 @2 1E 2 32 @ 40
 #3 26 3 33 # 23
 $4 25 4 34 $ 24
 %5 2E 5 35 % 25
 ^6 36 6 36 ^ 5E
 &7 3D 7 37 & 26
 *8 3E 8 38 * 2A
 (9 46 9 39 (28
)0 45 0 30) 29
 _- 4E - 2D _ 5F
 += 55 = 3D + 2B
 BS 66 BS 08 BS 08
 A 1C a 61 A 41
 B 32 b 62 B 42
 C 21 c 63 C 43
 D 23 d 64 D 44
 E 24 e 65 E 45
 F 2B f 66 F 46
 G 34 g 67 G 47
 H 33 h 68 H 48
 I 43 i 69 I 49
 J 3B j 6A J 4A
 K 42 k 6B K 4B
 L 4B l 6C L 4C
 M 3A m 6D M 4D
 N 31 n 6E N 4E
 O 44 o 6F O 4F
 P 4D p 70 P 50

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

274

 Q 15 q 71 Q 51
 R 2D r 72 R 52
 S 1B s 73 S 53
 T 2C t 74 T 54
 U 3C u 75 U 55
 V 2A v 76 V 56
 W 1D w 77 W 57
 X 22 x 78 X 58
 Y 35 y 79 Y 59
 Z 1A z 7A Z 5A
 L-Shift 12
 R-Shift 59
 Enter 5A CR 0D CR 0D
 Space 29 Space 20 Space 20
 Cap 58
 { [54 [5B { 7B
 }] 5B] 5D } 7D
 | \ 5D \ 5C | 7C
 : ; 4C ; 3B : 3A
 " ' 52 ' 27 " 22
 < , 41 , 2C < 3C
 > . 49 . 2E > 3E
 ? / 4A / 2F ? 3F

As we see from the Category 1 key table, relating its Make/Brake code and matching ASCII
code of the corresponding character, it is apparent that the Make/Break codes of alphanumeric
keys doe not match with ASCII codes of the characters of the keys. When we type a key 'A' with
or without pressing a Shift key, the Make/Break code the host would get is 1Ch. This code must
be changed to either 61h (ASCII cod for 'a') without Shift or 41h(ASCII code for 'A') with Shift
pressed. Since there is no pattern to easily convert a Make/Break code to ASCII code, we have
to reply on a look-up table approach.

The approach here is to use a Make/Break code as the address where its ASCII equivalent code
is stored. In other words, the Make/Break code will direct where to get the ASCII equivalent
code. This sounds very simple with one minor constraint. A key in the keyboard generate the
same Make/Break code, however, depending upon the Shift key or Cap Lock key, it has two
ASCII equivalent codes. Therefore, we have to have two look-up tables, one without Shift (or
Cap) key, and the other with Shift (or Cap) key.

The following table summarizes the two look-up tables, rearranged in the rising order of the
Make/Break codes, the above table of Category 1 key.

Without Shift or Caps Lock With Shift or Caps Lock Make/Break
Code
(hex)

Character to be
Displayed

ASCII
code

Character to be
Displayed

ASCII
code

0E ` 60 ~ 7E
15 q 71 Q 51
16 1 31 ! 21
1A z 7A Z 5A

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

275

1B s 73 S 53
1C a 61 A 41
1D w 77 W 57
1E 2 32 @ 40
21 c 63 C 43
22 x 78 X 58
23 d 64 D 44
24 e 65 E 45
25 4 34 $ 24
26 3 33 # 23
29 Space 20 Space 20
2A v 76 V 56
2B f 66 F 46
2C t 74 T 54
2D r 72 R 52
2E 5 35 % 25
31 n 6E N 4E
32 b 62 B 42
33 h 68 H 48
34 g 67 G 47
35 y 79 Y 59
36 6 36 ^ 5E
3A m 6D M 4D
3B j 6A J 4A
3C u 75 U 55
3D 7 37 & 26
3E 8 38 * 2A
41 , 2C < 3C
42 k 6B K 4B
43 i 69 I 49
44 o 6F O 4F
45 0 30) 29
46 9 39 (28
49 . 2E > 3E
4A / 2F ? 3F
4B l 6C L 4C
4C ; 3B : 3A
4D p 70 P 50
4E - 2D _ 5F
52 ' 27 " 22
54 [5B { 7B
55 = 3D + 2B
5A CR 0D CR 0D
5B] 5D } 7D
5D \ 5C | 7C
66 BS 08 BS 0B

Then, how do we generate a table or two tables in 16F877 assembly language programming
environment? The easiest way of table building is to change the program counter (PC). As we
all know, PC indicates the next address to fetch a program code and execute. PC in 16F877 is a
13-bit register which has address access range of 213=8K words. The lower 8 bits of the PC is
can be controlled (i.e., read from and written to) by PCL (PC Lower Byte) register. The upper 5

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

276

bits are not directly accessed by PCH (PC High Byte), instead it is controlled by PCLATH (PC
Latch) register.

Table formation is utilized by the PCL in a subroutine, along with an instruction (retlw k,
return with k in W register) or a Microchip Assembler (MPASM) directive (DT, Define Table).
In other words, a table formation is a subroutine building with PCL, and lines of retlw and/or
DT.

Let's have a simple program to illustrate how to form a table. In the previous example of serial
communication, we have had a key typed in the keyboard echoed on a PC monitor. Now we
want to change the program slightly so that the program receives only numbers (0 to 9) from the
keyboard and echoes corresponding characters determined by the following table:

Key 0 1 2 3 4 5 6 7 8 9
Echo A B C D E F G H I J

The pseudo-code of the revised program would go like this:
(a) Receive a number from keyboard by calling RXPOLL subroutine
(b) The received key is converted from ASCII (30h for '0', for example) to a hex number (00h for
'0', for example).
(c) Check the table and find the corresponding character ('A' for 00h for example).
(d) Transmit the matched character to PC monitor by calling TXPOLL subroutine.

The following code lists the table subroutine, Keytable:

;
Keytable

addwf PCL
retlw 'A' ;PC+0
retlw 'B' ;PC+1
retlw 'C' ;PC+2
retlw 'D'
retlw 'E'
retlw 'F'
retlw 'G'
retlw 'H'
retlw 'I'
retlw 'J' ;PC+9

When this subroutine is called, the return address is stored in the Stack, and the content of PC is
the starting address of this subroutine in other words, the PC is the address of the first instruction
line is the subroutine:
addwf PCL.

That's why when a subroutine is called, it's executed from the first line of the subroutine. When
the addwf PCL is executed (sum of the content of W and PCL), the PC changes by the amount
of W content. If the W is 0, then there is no change in PC so the next line
retlw 0x41
would be executed. (Remember PC always directs the next code to fetch and execute.)

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

277

The instruction
retlw k

 is combination of two instructions:

movlw k
return

Therefore, retlw 0x41 returns to the next line after the caller with 41h in the W register. If
we place this content in the TXREG of USART module and call TXPOLL, the character 'A'
would be displayed on the monitor.

What happens if number 5 is pressed in the keyboard? The hex-converted number 05h would be
placed in W register after RXPOLL subroutine, then when the Keytable is called, PCL is
added by 5, therefore, the sixth line after the PCL instruction would be executed, which results in
the display of 'F' on the monitor. The following code lists the main part and the table of the
whole program.

;===

org 0x0000
GOTO START

;==
org 0x05

;start of the program from $0005
START

call ASYNC_mode ;initialization of USART module

BEGIN
banksel TXREG
clrf TXREG
clrf RCREG
clrf Ktemp

AGAIN
call RXPOLL ;read a key
movwf Ktemp
movlw 0x30
subwf Ktemp,0 ;Make it into a hex number (f-W -->d)
call Keytable ;Call Keytable match
call TXPOLL ;matched character
call CRLF ;CR and LF
goto AGAIN ;Repeat

Keytable
addwf PCL
retlw 'A' ;PC+0
retlw 'B' ;PC+1
retlw 'C' ;PC+2
retlw 'D'
retlw 'E'
retlw 'F'
retlw 'G'

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

278

retlw 'H'
retlw 'I'
retlw 'J'

The keytable can also be formed by using an assembler directive, DT. DT actually is a multiple
of retlw instructions:

Keytable

addwf PCL
DT "ABCDEFGHIJ" ;PC+0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

There is one important matter to remember when we use the PCL writing instruction, addwf
PCL. When a PCL is written, the lower 5 bits of PCLATH register is also written to PCH.
Since PC is PCH (PC[12:8])concatenated by PCL (PC[7:0]), if both the location of the caller line
and that of the keytable subroutine are located inside the 00h – FFh boundary, there is no
problem, since PCH for both parts is the same. Let's discuss this using the List file of the above
program.

MPASM 02.61 Released 19TABLE1.ASM 5-20-2004 14:58:05
LOC OBJECT CODE LINE SOURCE TEXT

00036
;===
0000 00037 ORG 0X0000
0000 2805 00038 GOTO START

00039
;==
0005 00040 ORG 0X05

00041 ;start of the program from $0005
0005 00042 START
0005 201E 00043 CALL ASYNC_MODE

00044
00045

0006 00046 BEGIN
0006 1283 1303 00047 BANKSEL TXREG
0008 0199 00048 CLRF TXREG
0009 019A 00049 CLRF RCREG
000A 01A0 00050 CLRF KTEMP
000B 00051 AGAIN
000B 2033 00052 CALL RXPOLL
000C 00A0 00053 MOVWF KTEMP
000D 3030 00054 MOVLW 0X30
000E 0220 00055 SUBWF KTEMP,0
000F 2013 00056 CALL KEYTABLE
0010 202B 00057 CALL TXPOLL
0011 203B 00058 CALL CRLF
0012 280B 00059 GOTO AGAIN

00060
00061

0013 00062 KEYTABLE
0013 0782 00063 ADDWF PCL
0014 3441 00064 RETLW 'A' ;PC+0
0015 3442 00065 RETLW 'B' ;PC+1
0016 3443 00066 RETLW 'C' ;PC+2

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

279

0017 3444 00067 RETLW 'D'
0018 3445 00068 RETLW 'E'
0019 3446 00069 RETLW 'F'
001A 3447 00070 RETLW 'G'
001B 3448 00071 RETLW 'H'
001C 3449 00072 RETLW 'I'
001D 344A 00073 RETLW 'J'

The first column is the program memory address and the second and the thirds are for the op-
codes of the instruction. As we see from the List file, the caller (which calls the Keytable
subroutine) is located at 000F. In other words, up until the Keytable is called, the PC is, in
binary number, 0 0000 0000 1111 (or 000Fh). In other words, the upper byte of PC, PCH, is
00000 (or 00h). This would be the content of the lower 5 bits of PCLATH when the Keytable
is called. When the PCL writing is done, 00h, the content of PCLATH will be filled to PCH,
making the upper byte of PC zero. This, however, does not cause any trouble, because the
Keytable subroutine, from 0013h to 001D, is with only lower byte portion of PC, PCL. In
other words, the PC access to the subroutine instructions are inside the range with PCH=00h.

If the caller and the keytable subroutine is apart more than FFh each other, and there is
uncertainty about this, we have to see the List file and decide what action should be made to
avoid possible PC related problem.

For example, consider that the caller is located in 000Fh (with the current PC) and the
keytable subroutine is located in 0113h instead. When the subroutine is called, the content of
PC is 0000Fh. Therefore the PCH is 00000b. This binary value of 00000h would be written to
the PCH portion of the PC when PCL writing is performed. Therefore the final value of PC
would be 0013h, instead of the desired value of 0113h. Therefore, we have to have the
following instruction just above the PCL writing instruction:

bsf PCLATH, 0x00

Check with Microchip's 16F877 manual for detailed description of PC, PCH, PCL, PCLATH,
and PCL writing with relation to the four different pages of 8K word program memory structure.

Now, we are ready to explore the second version of the keyboard connection to a PC monitor.
The second example is to display the characters of the keys itself not the Make/Break codes of
the keys. We use the Make/Break code table for keytable formulation. Since we have to
consider the three following conditions; (a) when Shift key is not pressed, (b)when Shift key is
pressed, and (c) when Caps Lock key is pressed. When Caps Lock is pressed we change only
alphabets to upper cases and keep all other keys as if no Shift key is pressed.

The first table is for the keys without a Shift key, NoShiftKeyTable. According to the
Make/Break code, the lowest hex number of the code is 0E which, without a Shift Key, is for '`'
(Apostrophe), with its ASCII code 60. Then there are gaps until we have the next Make/Break
code, which are 15h for 'q' and 16h for '1'. The following code shows the table for no Shift key.
We will start the table 0100h. Since we assume that the caller is located before 0100h address,
before the call is made, the PCH would be 00h. At the first line of the subroutine, we configure
the PCH of PC by PCLATH instruction.

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

280

The second table is for the keys with a Shfit key, ShiftKeyTable, located just after the first
table. This table can be similarly formed.

The third table accommodates Caps Lock key, CapKeyTable, which starts from 0200h. This
address (also PC) requires additional PCL configuration. Details are commented in the code
section.

The pseudo-code of the main section of the program goes like this. It's rather complicated. So
we have to fully understand the Make/Break code pattern when a key is pressed and released.

(1)BEGIN: read the first frame and get the 8-bit key data
(2)Check if the key is 12h (Left Shift) or 59h (Right Shift). If it is, jump to LRSHIFT
(3) Check if the key is 58h(Caps Lock). If it is, jump to CAPS
(4)NOSHIFT:
 (a) Call NoShiftKeyTable and display what W register holds
 (b) read the next frame. If the key is F0h, then read one more frame then go to BEGIN
 (c) If the key is not F0h, go to NOSHIFT
(5) LRSHIFT:

(a)Read the next frame. If the key is F0h, then read one more frame then go to BEGIN
(b)If the key is 12 or 59h (Shift key is not broken yet), go to LRSHIFT
(c) If the key is neither 12h nor 59h, call ShiftKeyTable and display what W register

holds.
(d)read the next frame. If the key is not F0h, call ShiftKeyTable and display
(e) if the key is F0h, go to LRS
(f)LRS: read next frame, if the key is 12h, go to BEGIN. If the key is not12h, go to

LRSHIFT.
(6)CAPS:

(a)Read the next two frames.
(b) CAPNEXT: Read the next frame. If the key is 58h, then read two more frames, then

go to BEGIN
(b)If the key is not 58h, call CapKeyTable and display what W register holds.
(c)Read the next frame. If the key is F0h, read the next frame and go to CAPNEXT.
(d) If the key is 58h, then read two more frames, then go to BEGIN.

The next listing shows a complete code for displaying characters, numbers, and other symbols
while accommodating Shift (Left and Right) and Caps Lock keys. Follow each line and
comment closely to better understand the program.

;kbd3.asm
;
;SHIFT and CAPS LOCK are featured
;
;This program is to:
;1. Read At or PS/2 Type Keyboard
;2. Display them, as characters, on PC monitor
;
;3. Note that all Category 2 keys (E0 keys) are ignored

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

281

;
; Baud rate for this is set as 19200 for Monitor display
;
;
;Terminal set up: 8N1 19200
;
;Asynchronous mode
;

list P = 16F877
PCL EQU 0x02 ;For Key Table Calling (Lower PC)
PCLATH EQU 0x0A ;For upper part of PC
STATUS EQU 0x03
CARRY EQU 0x00
ZERO EQU 0x02
TRISB EQU 0x86
PORTB EQU 0x06
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)
CARRY EQU 0x00
ZERO EQU 0x02
MSB EQU 0x07
CLOCK EQU 0x07 ;from Keyboard
KDATA EQU 0x06 ;from Keyboard

;
;RAM AREA

CBLOCK 0x20
TXtemp
KSTAT
DATAreg
Kount100us
Kount10ms
Kount1s
Bitcount ;data bit count

ENDC

;===
org 0x0000
GOTO START

;==
org 0x05

;start of the program from $0005
START

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

282

banksel TRISB
; 1100 0000

movlw B'11000000' ;RB7 for CLOCK and RB6 for DATA as inputs
movwf TRISB
call ASYNC_mode
call delay1s ;Give Keyboard to send STATUS to the host

;KBD initial set-up by itself
;BAT(Basic Assurance Test) code
;typematic/make/break coding

BEGIN
banksel TXREG
clrf TXREG
banksel DATAreg
clrf DATAreg

; CHECK IF THE CLOCK is HIGH at least for 10mS

banksel PORTB
btfss PORTB, CLOCK
goto BEGIN ;if CLOCK is LOW, start again
call Delay10ms ;10mS delays

;This short delay speeds up the response
;check again for CLCOK

btfss PORTB, CLOCK
goto BEGIN

;READY FOR CLOCK PULSES
;KSTAT
;KSTAT<0>: Parity Bit Value
;KSTAT<2>: Kbd error

clrf KSTAT
KEYIN
;X reading

call RX11bit ;
clrf STATUS
movf DATAreg,0 ;Break Code?
xorlw 0xF0
btfss STATUS,ZERO
goto CAT

;BREAK is detected. Abort It. Resume It
goto BEGIN

;Category detection (SHIFT or CAPS LOCK)
CAT clrf STATUS

movf DATAreg,0
xorlw 0xE0
btfsc STATUS,ZERO
goto Begin ;E0 keys (CAT2) are ignored
clrf STATUS
movf DATAreg,0
xorlw 0x12
btfsc STATUS,ZERO
goto LRSHIFT
clrf STATUS
movf DATAreg,0
xorlw 0x59

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

283

btfsc STATUS,ZERO
goto LRSHIFT
clrf STATUS
movf DATAreg,0
xorlw 0x58 ;CAPS LOCK
btfsc STATUS,ZERO
goto CAPS

;L Shift ===>12 | F0 12
;R Shift ===>59 | F0 59

;CAT1 without Shift or Caps Lock Key
CAT1 movf DATAreg,0

call NoShiftKeyTable ;(X) display
call TXCALL

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO

;Key is not broken. Still pressed,
goto CAT1

;Key is broken
;Last (X) reading

call RX11bit ;(X) after F0

goto BEGIN

;L-SHIT and R-SHIFT has the form
;L-SHIFT and a character 12 X | F0 X |F0 12
;R-SHIFT and a character 59 X | F0 X |F0 59

LRSHIFT ;12 or 59 entered

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfsc STATUS,ZERO
goto BEGIN

;X

clrf STATUS ;if (12) do not display
movf DATAreg,0
xorlw 0x12
btfsc STATUS, ZERO
goto LRSHIFT

clrf STATUS ;if (59) do not display
movf DATAreg,0
xorlw 0x59
btfsc STATUS, ZERO
goto LRSHIFT

;a Key (X) is entered

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

284

movf DATAreg,0
call ShiftKeyTable
call TXCALL

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO
goto LRSHIFT

;Last (X) reading
call RX11bit
movf DATAreg,0
clrf STATUS ;check if (X) or (12) entered after F0
xorlw 0x12
btfsc STATUS,ZERO
goto BEGIN
goto LRSHIFT

;
CAPS ;caps lock (58) entered

;(F0) detection
call RX11bit ;this must be F0
call RX11bit ;this must be (58) again

CAPnext
call RX11bit ;Check if (58) or other
clrf STATUS
movf DATAreg,0
xorlw 0x58
btfss STATUS,ZERO
goto CAPtwo ;End of CAP session
call RX11bit ;F0
call RX11bit ;(58)
goto BEGIN

;a Key (X) is entered
CAPtwo

movf DATAreg,0
call CAPKeyTable
call TXCALL

;(F0) detection
call RX11bit ;
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO
goto CAPtwo

;Last (X) reading ;F0 is read
call RX11bit ;(X) again and ignore
goto CAPnext

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

285

;SUBROUTINE RX11bit ===
;RX Routine for 11-bit read
;1 Start
;8 Data (LSB first)
;1 Parity (Odd)
;1 Stop (HIGH)
;KSTAT Bit Info
; KSTAT<0> : parity
; KSTAT<2>:kBD Error
RX11bit

clrf DATAreg
banksel PORTB

;Let it have at least 500us CLOCK high period
btfss PORTB, CLOCK
goto RX11bit ;if CLOCK is LOW, start again
call Delay100us ;200uS delays
call DElay100us

;check again for CLCOK
btfss PORTB, CLOCK
goto RX11bit

;Clock Check
Scheck

btfsc PORTB,CLOCK
goto Scheck
call delay5us ;wait for 5us for data stabilization
btfsc PORTB, KDATA
goto KERROR ;if START BIT is not Zero ERROR

;START Detected
;8-bit Data Check

movlw 0x08
movwf Bitcount ;8 data bits

RXNEXT
bcf STATUS, CARRY ;Clear the Carry Bit
rrf DATAreg ;rotate to the right

CKHIGH
btfss PORTB, CLOCK ;Wait for CLOCK to back to High
goto CKHIGH

CKLOW btfsc PORTB, CLOCK ;wait for CLOCK now to LOW
goto CKLOW
call delay5us ;5us delay
btfsc PORTB, KDATA ;0 or 1
bsf DATAreg, MSB ;1? Then set the MSB
decfsz Bitcount
goto RXNEXT

;Check for Parity Bit
;Wait for CLOCK back to High
CKHIGH2

btfss PORTB, CLOCK ;Wait for CLOCK to back to High
goto CKHIGH2

CKLOW2
btfsc PORTB, CLOCK ;wait for CLOCK now to LOW
goto CKLOW2
call delay5us ;5us delay
btfsc PORTB, KDATA ;Parity Bit
goto OneP ;Pbit=1
bcf Kstat,0x00 ;Pbit=0
goto Stopcheck

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

286

Onep bsf Kstat, 0x00 ;Pbit=1
Stopcheck
;wait for CLOCK back to High
CKHIGH3

btfss PORTB, CLOCK ;Wait for CLOCK to back to High
goto CKHIGH3

CKLOW3
btfsc PORTB, CLOCK ;wait for CLOCK now to LOW
goto CKLOW3
call delay5us ;5us delay
btfss PORTB, KDATA ;STOP bit
goto KERROR ;if STOP=0 , ERROR
return

KERROR
bsf KSTAT, 0x02
return

;==
;RX TX Initialization with Asyc Mode
;Async_mode Subroutine
Async_mode

banksel SPBRG
movlw baud ;B'00001111' (19200)
movwf SPBRG
banksel TXSTA
movlw TXMODE ;B'00100000' Async Mode
movwf TXSTA
banksel RCSTA
movlw RXMODE ;B'10010000' Enable Port
movwf RCSTA
return

;==
TXCALL
;slight change so that CR make CR and LF together

banksel TXtemp
movwf TXtemp
clrf STATUS
movf TXtemp,0
xorlw 0x0D
btfsc STATUS,ZERO
goto CRNLF

Keymain
banksel PIR1
btfss PIR1, TXIF ; Check if TX buffer is empty
goto Keymain
banksel TXREG
movf Txtemp,0
movwf TXREG ; Place the character to TX buffer
return

CRNLF call CRLF
return

;===
CRLF

banksel PIR1
btfss PIR1, TXIF
goto CRLF
banksel TXREG
movlw H'0d' ;CR

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

287

movwf TXREG
LFkey

banksel PIR1
btfss PIR1, TXIF
goto LFkey
banksel TXREG
movlw H'0A' ;LF
movwf TXREG
return

;==
delay5us
;need total 10 insturctions

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
return

;==

Delay100us
banksel Kount100us
movlw H'A4'
movwf Kount100us

R100us
decfsz Kount100us
goto R100us
return

;
;10ms delay
; call 100 times of 100 us delay (with some time discrepancy)
Delay10ms

banksel Kount10ms
movlw H'64' ;100
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

;

;1 sec delay
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw 0x6A
movwf Kount1s

R1s call Delay10ms
decfsz Kount1s
goto R1s
return

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

288

;
;KEYTABLE STARTS HERE
;==

org 0x0100 ;So that all the table
;range has the same bit=1
;for the bit8 of PC

;Without Shift (or CAPs Lock) Key Table
NoshiftKeyTable

bsf PCLATH, 0x00
bcf PCLATH,0x01
addwf PCL

;Note that writing to PCL also brings the content of lower 5 bits of PCLATH
;to PC.
;In this code, this Table starts from 0100h
;While the main part of program which calls this Table is somewhere in
;0045h.
;for 0045, the PCLATH part is 00
;Therefore we have to manually set the PCLATH part so that it
;can point inside this table

retlw 0 ;PC+0 (return 0 means display nothing)
retlw 0 ;PC+1
retlw 0 ;+2
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0 ;+0D
retlw 0x60 ;+0E MAKE/BREAK= 0E ---->ASCII = 0x60

Apostrophe
retlw 0 ;+0F
retlw 0
retlw 0
retlw 0
retlw 0 ;+13
retlw 0 ;+14
DT "q1" ;+15, 16
retlw 0 ;+17
retlw 0
retlw 0
DT "zsaw2" ;+1A, 1B, 1C, 1D, 1E
retlw 0 ;+1F
retlw 0 ;+20
DT "cxde43" ;+21, 22, 23, 24, 25, 26
retlw 0 ;+27
retlw 0 ;+28
retlw ' ' ;+29 Space
DT "vftr5" ;+2A, 2B, 2C, 2D, 2E
retlw 0 ;+2F
retlw 0 ;+30
DT "nbhgy6" ;+31, 32, 33, 34,35,36

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

289

retlw 0 ;+37
retlw 0 ;+38
retlw 0 ;+39
DT +"mju78" ;+3A, 3B, 3C, 3D, 3E
retlw 0 ;+3F
retlw 0 ;+40
DT ",kio09" ;+41, 42,43,44,45,46
retlw 0 ;+47
retlw 0 ;+48
DT "./l;p-" ;+49, 4A, 4B, 4C, 4D, 4E
retlw 0 ;+4F
retlw 0 ;+50
retlw 0 ;+51
retlw 0x27 ;+52 single quote
retlw 0 ;+53
DT "[=" ;+54, 55
retlw 0 ;+56
retlw 0 ;+57
retlw 0 ;+58
retlw 0 ;+59
retlw 0x0D ;+5A Return
retlw ']' ;+5B
retlw 0 ;+5C
retlw 0x5C ;+5D \
retlw 0 ;+5E
retlw 0 ;+5F
retlw 0 ;+60
retlw 0 ;+61
retlw 0 ;+62
retlw 0 ;+63
retlw 0 ;+64
retlw 0 ;+65
retlw 0x08 ;+66 Backspace

;end if NoShiftKetTable

;With Shift Key Table
shiftKeyTable

bsf PCLATH, 0x00
bcf PCLATH,0x01
addwf PCL

;Note that writing to PCL also brings the content of lower 5 bits of PCLATH
;to PC.
;In this code, this Table starts from 0134h
;While the main part of program which calls this Table is somewhere in
;0045h.
;for 0045, the PCLATH part is 00
;Therefore we have to manually set the PCLATH part so that it
;can point inside this table

retlw 0 ;PC+0
retlw 0 ;PC+1
retlw 0 ;+2
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

290

retlw 0
retlw 0
retlw 0
retlw 0
retlw 0 ;+0D
retlw 0x7E ;+0E MAKE/BREAK= 0E ---->ASCII 7E (~)
retlw 0 ;+0F
retlw 0
retlw 0
retlw 0
retlw 0 ;+13
retlw 0 ;+14
DT "Q!" ;+15, 16
retlw 0 ;+17
retlw 0
retlw 0
DT "ZSAW@" ;+1A, 1B, 1C, 1D, 1E
retlw 0 ;+1F
retlw 0 ;+20
DT "CXDE$#" ;+21, 22, 23, 24, 25, 26
retlw 0 ;+27
retlw 0 ;+28
retlw ' ' ;+29 Space
DT "VFTR%" ;+2A, 2B, 2C, 2D, 2E
retlw 0 ;+2F
retlw 0 ;+30
DT "NBHGY^" ;+31, 32, 33, 34,35,36
retlw 0 ;+37
retlw 0 ;+38
retlw 0 ;+39
DT "MJU&*" ;+3A, 3B, 3C, 3D, 3E
retlw 0 ;+3F
retlw 0 ;+40
DT "<KIO)(" ;+41, 42,43,44,45,46
retlw 0 ;+47
retlw 0 ;+48
DT ">?L:P_" ;+49, 4A, 4B, 4C, 4D, 4E
retlw 0 ;+4F
retlw 0 ;+50
retlw 0 ;+51
retlw 0x22 ;+52 double quote
retlw 0 ;+53
DT "{+" ;+54, 55
retlw 0 ;+56
retlw 0 ;+57
retlw 0 ;+58
retlw 0 ;+59
retlw 0x0D ;+5A Return
retlw '}' ;+5B
retlw 0 ;+5C
retlw 0x7C ;+5D |
retlw 0 ;+5E
retlw 0 ;+5F
retlw 0 ;+60
retlw 0 ;+61
retlw 0 ;+62
retlw 0 ;+63

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

291

retlw 0 ;+64
retlw 0 ;+65
retlw 0x08 ;+66 Backspace

;CAPs Lock Key Table
org 0x0200 ;This starts from 0200h

;to well arrange the PCH of PC
CAPKeyTable

bsf PCLATH, 0x01
bcf PCLATH, 0x00 ;see here that PCH is 02h?
addwf PCL

retlw 0 ;PC+0
retlw 0 ;PC+1
retlw 0 ;+2
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0 ;+0D
retlw 0x60 ;+0E MAKE/BREAK= 0E ---->ASCII = 0x60

Apostrophe
retlw 0 ;+0F
retlw 0
retlw 0
retlw 0
retlw 0 ;+13
retlw 0 ;+14
DT "Q1" ;+15, 16
retlw 0 ;+17
retlw 0
retlw 0
DT "ZSAW2" ;+1A, 1B, 1C, 1D, 1E
retlw 0 ;+1F
retlw 0 ;+20
DT "CXDE43" ;+21, 22, 23, 24, 25, 26
retlw 0 ;+27
retlw 0 ;+28
retlw ' ' ;+29 Space
DT "VFTR5" ;+2A, 2B, 2C, 2D, 2E
retlw 0 ;+2F
retlw 0 ;+30
DT "NBHGY6" ;+31, 32, 33, 34,35,36
retlw 0 ;+37
retlw 0 ;+38
retlw 0 ;+39
DT "MJU78" ;+3A, 3B, 3C, 3D, 3E
retlw 0 ;+3F
retlw 0 ;+40
DT ",KIO09" ;+41, 42,43,44,45,46
retlw 0 ;+47

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

292

retlw 0 ;+48
DT "./L;P-" ;+49, 4A, 4B, 4C, 4D, 4E
retlw 0 ;+4F
retlw 0 ;+50
retlw 0 ;+51
retlw 0x27 ;+52 single quote
retlw 0 ;+53
DT "[=" ;+54, 55
retlw 0 ;+56
retlw 0 ;+57
retlw 0 ;+58
retlw 0 ;+59
retlw 0x0D ;+5A Return
retlw ']' ;+5B
retlw 0 ;+5C
retlw 0x5C ;+5D \
retlw 0 ;+5E
retlw 0 ;+5F
retlw 0 ;+60
retlw 0 ;+61
retlw 0 ;+62
retlw 0 ;+63
retlw 0 ;+64
retlw 0 ;+65
retlw 0x08 ;+66 Backspace

;END OF CODE
END

Compile and run the above example code, see how fast or slow the 16F988 responds and
displays the keys.

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

293

5. Third Code - Display Key in LCD

The next, final version is to change the display medium from the PC monitor to the 20x4 LCD
module, we studied in the Serial Communication. As in the digital clock, we will apply the 4-bit
interface configuration to display characters.

Fig. 78 Connection to display key in LCD

As shown in the schematic, PORTB is assigned to LCD control as we did before, and RD7 and
RD6 are assigned to the DATA and CLOCK signal lines of the keyboard. In this final version,
we will have two example codes. The first one is to display the keyboard on the LCD from the
first column of the line 1 to the last column of the line 4. The first one, for convenience and
simplicity, ignores Back Space (BS) and Carriage Return (CR) keys. The LCD controller inside
the module does not have the stored character for BS and CR, therefore, no output will be
displayed. The accommodation of these two keys is made in the second example code of this
application.

Since most of the subjects here are related to the LCD control and keyboard reading, the only
important thing is to remember the cursor location and its address and control them for display.
In most LCD module, all the characters in ASCII code table and some other special characters
are stored at the addresses which are the ASCII codes themselves. For example, the character 'A'

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

294

in dot matrix form is stored at 41h, and the ASCII code of 'A' is 41h. This means that we can use
the two key tables we used for PC monitor display without any change.

As we discussed in the LCD module in Chapter 6, there is somewhat weird address allocation of
20x4 positions of the LCD module. Here we show again the address of each display cell of 20x4
LCD module:

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
First line 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h
Second line 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h
Third line 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h 27h
Fourth Line 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh 60h 61h 62h 63h 64h 65h 66h 67h

As you see the addresses are continuous from line 1 to line 3, and from line 2 and 4. Therefore,
displaying characters continuously from the first line to the last involves tracking the current
cursor position and its address. For example, if the current cursor position is the 20th position of
line 2 (address = 53h), the next cursor position must be the 1st position of line 3 (address = 14h).

Indeed, there is a way to read the current cursor address by reading the address from the LCD
module. However, actually, reading the address after every writing a data into LCD is not
necessary. In the reset, the LCD is usually configured to start from the first position of the first
line, and as a character is displayed the address incremented automatically. Therefore, if we
assign the cursor position, not the cursor address which must be read from LCD module, and
increase the cursor position every time we write a data to the LCD module, we can easily track
the current cursor position. So in the first example code for LCD display, we assign a file
register CURSOR to track the current cursor position. The CURSOR's value of the cursor
position, in the continuous order, is assigned as follows.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
First line 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14
Second line 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28
Third line 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C
Fourth Line 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50

So when it starts, the CURSOR=1 while the cursor address is 00h. Similarly, CURSOR=3B while
the cursor address in the LCD module is 26h. Also, if CURSOR=15, we change the cursor
address to 40h so that the LCD module actually moves the cursor to the first position of the
second line. The cursor is not changed accordingly unless the cursor address is changed
according to the address table: CURSOR itself cannot change the cursor position; it is only for our
convenience in cursor position tracking.

Since our LCD configuration automatically increases the cursor address by one whenever a
character is displayed, we increase the CURSOR by 1 every time we write a character to the LCD
module, and we check in which line the cursor is currently pointed. If the current cursor position
is, for example, at the last position of line 1, then, the next CURSOR value must be changed to
the first position of line 2. This seems quite trivial since CURSOR value is well ordered;
however, the cursor address is not so well ordered. Since we do not have the exact positional
information on the cursor, we rely only on CURSOR to properly change the cursor address for the

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

295

correct next cursor address depending upon the current position.

The following code is the usual LCD initialization routine for 4-bit interfacing. Here the starting
cursor position is position 1 at line 1. The four-bit write routines, hnibble4, instw4, and
dataw4, are those we already built and used in Chapter 6. Use them without any change here.

;SUBROUTINE LCD4INIT
;Function for 4-bit (only one write must be done)
;In other words, send only the high nibble
LCD4INIT
;IMPORTANT PART

movlw 0x28
call hnibble4

;Fundtion for 4-bit, 2-line display, and 5x8 dot matrix
movlw 0x28
call instw4

;Display On, CUrsor On, No blinking
movlw 0x0E ;0F would blink
call instw4

;DDRAM address increment by one & cursor shift to right
movlw 0x06
call instw4

;DISPLAY CLEAR
CLEAR

movlw 0x01
call instw4

;
call posline11 ;pos1 and line 1

;now CURSOR=1
return

The following subroutine, LCDisplay, is the main displaying routine monitoring and handling
the cursor positions and addresses.

;LCD DISPLAYING SUBROUTINE
LCDisplay

call dataw4 ;write a character
incf CURSOR ;every time of display, increase cursor

;CURSOR is automatically incremented by 1 from LCDisplay
;if CURSOR is 20 (0x14), change to posline12
;if CURSOR is 40 (0x28), change to posline13
;if CURSOR is 60 (0x3C), change to posline14
;if CURSOR is 80 (0x50), change to posline11

clrf STATUS
movf CURSOR,0 ;if the CURSOR is supposed to be

;pos 1 and line 2, the Cursor Address
must

;be changed also
xorlw 0x15
btfsc STATUS, ZERO
goto Toline2

clrf STATUS
movf CURSOR,0

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

296

xorlw 0x29
btfsc STATUS,ZERO
goto Toline3

clrf STATUS
movf CURSOR,0
xorlw 0x3D
btfsc STATUS,ZERO
goto Toline4

clrf STATUS ;if the cursor is at the last pos
;at the 4th line, the next cursor
;position is the pos 1 at line 1
;after clearing the LCD

movf CURSOR,0
xorlw 0x51
btfsc STATUS,ZERO
call LCDClearhome ;delete all an move to (1,1)
return

Toline2
call posline12
return

Toline3
call posline13
return

Toline4
call posline14
return

Clearing the LCD and returning to position 1 at line is done by the following subroutine,
LCDclrearhome. The first two instruction write clears and move the cursor to the "home"
position. The next, third, writing is not necessary but used anyway to show the actual cursor
address and the variable CURSOR we use throughout our example code.

;SUBROUTINE
;DISPLAY CLEAR and Cursor to Home position (line 1, position 1)
LCDclearhome

movlw 0x01
call instw4

;Now let's move the cursor to the home position (position 1 of line #1)
;and set the DDRAM address to 0. This is done by the "return home"
instruction.

movlw 0x02
call instw4

;home position
movlw 0x80
call instw4
movlw 0x01
movwf CURSOR
return

The following four subroutines are for moving the cursor address to the first positions of the four
lines, respectively. Note and see the matching hex values for CURSOR and the actual cursor
address values that are written by instw4 subroutine.

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

297

posline11
;Position to pos 1 and line 1

movlw 0x80
call instw4 ;Cursor address for (1,1)
movlw 0x01
movwf CURSOR
return

posline12 ;pos 1 and line 2
movlw 0xC0
call instw4
movlw 0x15 ;21
movwf CURSOR
return

posline13 ;pos1 and line3
movlw 0x94
call instw4
movlw 0x29 ;41
movwf CURSOR
return

posline14 pos 1 and line 4
movlw 0xD4
call instw4
movlw 0x3D ;61
movwf CURSOR
return

The full example code, without subroutine listings, follows below.

;KBD4.asm
;
;NOTE: In this program
; BACK SPACE key is not honored
; CR key is not recognized
;
;
;This program is
;1. To read keys from AT or PS/2 keyboard
;2. to display the key on the 20x4 LCD module by Truly (HD44780 compatible)
;3. Displays from the first dot matrix to the last one
;4. 4. IF the last dot is reached, it is cleared and restart from the first
dot
;
; LCD is with 4-bit interfacing
;

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

298

;CR key would change the line
;
; Pin Connection from LCD to 16F877
; LCD (pin#) 16F877 (pin#)
;DB7 (14) -----RB7(40)
;DB6 (13) ----RB6(39)
;DB5 (12) ----RB5(38)
;DB4 (11) ----RB4(37)
;E (6) ------RB2(35)
;RW (5) -----RB3(36)
;RS (4) -----RB1(24)
;Vo (3) -----GND
;Vdd (2) ----+5V
;Vss (1) -----GND
;
;KEYBOARD Interfacing
;CLOCK -----RD7 (input)
;DATA ------RD6 (input)
;
;

list P = 16F877

STATUS EQU 0x03
PCL EQU 0x02 ;For Key Table Calling
PCLATH EQU 0x0A ;upper part of PC
CARRY EQU 0x00
ZERO EQU 0x02
PORTB EQU 0x06
TRISB EQU 0x86
RS EQU 0x01 ;RB1
E EQU 0x02 ;RB2
RW EQU 0x03 ;RB3
TRISD EQU 0x88
PORTD EQU 0x08
CARRY EQU 0x00
MSB EQU 0x07
CLOCK EQU 0x07 ;from Keyboard (RD7)
KDATA EQU 0x06 ;from Keyboard (RD6)

;RAM

CBLOCK 0x20
CURSOR ;tracking the current display position

;CURSOR
;1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 line 1
;21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 line 2
;41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 line 3
;61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 line 4
;

Daddr ;Display address (cursor pos)
Dkey ;Key character to be displayed
DATAreg
Bitcount
Kstat
Kount120us ;Delay count (number of instr cycles for delay)

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

299

Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m
Temp ;temp storage

ENDC

;program should start from 0005h
;0004h is allocated to interrupt handler

org 0x0000
goto START

org 0x05
Start

banksel TRISD
; 1100 0000

movlw B'11000000' ;RB7 for CLOCK and RB6 for DATA as inputs
movwf TRISD

call delay1s ;Give Keyboard to send STATUS to the host

BANKSEL TRISB
movlw 0x00
movwf TRISB ;All output

banksel PORTB
clrf PORTB ;RW set LOW here

clrf CURSOR ;Current Display Location
incf CURSOR ;Home cursor position (1, 1)

;LCD routine starts
call delay10ms
call delay10ms

banksel PORTB
clrf PORTB ;RW set LOW here

;give LCD module to reset automatically
call LCD4init

;===
;KBD Monitoring
BEGIN

banksel DATAreg
clrf DATAreg

; CHECK IF THE CLCOK is HIGH at least for 10mS

banksel PORTD
btfss PORTD, CLOCK

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

300

goto BEGIN ;if CLOCK is LOW, start again
call Delay10ms ;10mS delays

;check again for CLCOK
btfss PORTD, CLOCK
goto BEGIN

;READY FOR CLOCK PULSES

clrf KSTAT
KEYIN
;X reading

call RX11bit ;
clrf STATUS
movf DATAreg,0 ;Break Code?
xorlw 0xF0
btfss STATUS,ZERO
goto CAT

;BREAK is detected. Abort It. Resume It
goto BEGIN

;Category detection
CAT clrf STATUS

movf DATAreg,0
xorlw 0xE0
btfsc STATUS,ZERO
goto Begin ;E0 keys (CAT2) are ignored
clrf STATUS
movf DATAreg,0
xorlw 0x12
btfsc STATUS,ZERO
goto LRSHIFT
clrf STATUS
movf DATAreg,0
xorlw 0x59
btfsc STATUS,ZERO
goto LRSHIFT
clrf STATUS
movf DATAreg,0
xorlw 0x58 ;CAPS LOCK
btfsc STATUS,ZERO
goto CAPS
movf DATAreg,0
clrf STATUS ;CR check
xorlw 0x5A
btfsc STATUS,ZERO
goto CRhandle

;L Shift ===>12 | F0 12
;R Shift ===>59 | F0 59

;CAT1 has the format of (X)|(F0)(X)
CAT1 movf DATAreg,0
;check if the key in is CR
;Then we have to move the next line

call NoShiftKeyTable ;(X) display
call LCDisplay

;(F0) detection
call RX11bit
clrf STATUS

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

301

movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO

;Key is not broken. Still pressed,
goto CAT1

;Key is broken
;Last (X) reading

call RX11bit ;(X) after F0

goto EGIN

;L-SHIT and R-SHIFT has the form
;L-SHIFT and a character 12 X | F0 X |F0 12
;R-SHIFT and a character 59 X | F0 X |F0 59

LRSHIFT ;12 or 59 entered

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfsc STATUS,ZERO
goto BEGIN

;X

clrf STATUS ;if (12) do not display
movf DATAreg,0
xorlw 0x12
btfsc STATUS, ZERO
goto LRSHIFT

clrf STATUS ;if (59) do not display
movf DATAreg,0
xorlw 0x59
btfsc STATUS, ZERO
goto LRSHIFT

;a Key (X) is entered
movf DATAreg,0
call ShiftKeyTable
call LCDisplay

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO
goto LRSHIFT

;Last (X) reading
call RX11bit
movf DATAreg,0
clrf STATUS ;check if (X) or (12) entered after F0
xorlw 0x12

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

302

btfsc STATUS,ZERO
goto BEGIN
goto LRSHIFT

;
CAPS ;caps lock (58) entered

;(F0) detection
call RX11bit ;this must be F0
call RX11bit ;this must be (58) again

CAPnext
call RX11bit ;Check if (58) or other
clrf STATUS
movf DATAreg,0
xorlw 0x58
btfss STATUS,ZERO
goto CAPtwo ;End of CAP session
call RX11bit ;F0
call RX11bit ;(58)
goto BEGIN

;a Key (X) is entered
CAPtwo

movf DATAreg,0
call CAPKeyTable
call LCDisplay

;(F0) detection
call RX11bit ;this
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO
goto CAPtwo

;Last (X) reading ;F0 is read
call RX11bit ;(X) again and ignore
goto CAPnext

;CR handling
CRhandle

call RX11bit ;F0 read
call RX11bit ;CR reading again

;have to move the cursor to the next line at the first position
;
;Routine Here

goto BEGIN

;SUBROUTINES and TABLES HERE
;
;HERE

END
;END of CODE

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

303

6. A complete Keyboard-LCD Operation with Back Space and Carriage Return

The next version of Keyboard and LCD connection with a 16F877 is to accommodate the two
keys we did not: Back Space (BS) and Carriage Return (CR) keys. When BS key is detected
we have to move the cursor position to the left by 1 position. This, then, needs the current
cursor position address. When CR is detected, again, the cursor position address must bee
provided so that we move the cursor to the first position of the next line.

These new features require reading information from the LCD controller/interface inside the
LCD module, which we have not discussed at all. We only discussed about writing instructions
and data to the LCD controller. The reason we need reading information, especially the current
cursor address information, is that, as we mentioned before, we do not have direct knowledge on
the cursor position address unless we monitor the position every time we write a character on the
LCD. Of course there is an indirect way to fulfill this task: monitoring CURSOR value every
time we write a character to LCD and interpret the cursor position address from the CURSOR
value.

As discussed above, CURSOR is the variable assigned for convenience; it does not indicate the
cursor position inside the DD(Display Data) RAM of the LCD module. But reading the cursor
position address would be better because we need not this reading all the time as we have to do
in the CURSOR tracing approach; we do this cursor position address reading only when CR or BS
key is detected. In conclusion, whether we use an arbitrary variable for cursor tracking or not,
reading the location address from the LCD interface/controller brings more convenience and
gives a good practice of more utilizing a LCD module.

As we studied in Chapter 6, there is a command in HD44780 or equivalent LCD
controller/interface of "Reading Busy Flag and DD RAM address" as shown below. On
additional command we include is the cursor address setting command. These two are most
relevant in the discussion of this version of keyboard - LCD connection.

As the table shows, we read 7-bit DDRAM address of the current cursor position. We do not
care much on the flag bit, BF, if the LCD is ready to receive data or not, since our interest is the
7 bits returned to 16F877.

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

304

By the way, cursor address read from the LCD module for 20x4 display format based on the
position and the line is as follows:

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
First line 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h
Second line 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h
Third line 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h 27h
Fourth Line 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh 60h 61h 62h 63h 64h 65h 66h 67h

To read the cursor address, we have to clear the RS pin and set the RW bit. Since we use 4-bit
interfacing, we need two consecutive commanding to the LCD to read the total 8-bit data
composed of the BF bit and the 7-bit cursor address. Care should be taken when we read cursor
address from LCD module. Usually we set all the pins of PORTB as outputs since the upper 4
data lines RB<7:4> and RW, E, RS are all outputs. However, when we read the data bits
RB<7:4> must be changed to input pins.

Another caution we have to use is that in both readings, even though there are only 4 data lines
involved, when we read data from PORTB as a byte oriented instruction we read the whole 8 bits
anyway. Since the first reading gets upper nibble and the second, the lower nibble, we have to
extract the nibbles properly to form a byte hex number. The following code illustrates the
DDRAM address reading subroutine, readad4, in 4-bit interfacing environment.

As you see at the bottom of the subroutine, once the reading is done, we move back to the usual
writing mode by setting the PORTB<7:4> as outputs and clearing the RW line.

;subroutine reading the cursor position
;RW Must be High
;RS Must be Low
;the 7th bit is BF flag (so ignore this one, or make MSB 0)
;PORTB <7:4> as inputs
;High then Low nibbles of ADDRESS
;The content of DDADDR read from LCD module (HEX Numbers)
;Line 1: 00 01 02 13
;Line 2: 40 41 42 53
;Line 3: 14 15 16 27
;Line 4: 54 55 56 67

readad4
banksel TRISB ;set Rb7 - DR4 as inputs
movlw 0xF0 ;upper 4 bits as inputs
movwf TRISB
banksel PORTB
bsf PORTB, RW ;READING MODE
call delay1ms
bcf PORTB,RS
call delay1ms
bsf PORTB, E
call delay1ms
bcf PORTB, E ;Reading starts here now

;upper byte first

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

305

;now PORTB<7:4> has the DDRAM ADDRESS
;upper nibble

movlw 0xF0
andwf PORTB,0
movwf DDtemp1 ;Ddtemp1 = DDADDR<7:4>|0000

;Reading for the second nibble
bcf PORTB,RS
call delay1ms
bsf PORTB, E
call delay1ms
bcf PORTB, E

;reading starts now
;for lower byte
;PORTB<7:4> has the DDADDR<3:0>

movlw 0xF0
andwf PORTB,0
movwf DDtemp2 ;Ddtemp2 = DDADDR<3:0>|0000
swapf DDtemp2 ;Ddtemp2 = 0000|DDADDR<3:0>

;add DDtemp1 and DDtemp2 for DDADDR
;

movf DDtemp1,0
addwf DDtemp2,0
movwf DDADDR ;DDADDR=DDADDR<7:4>|DDADDR<3:0>

;END of Reading
banksel TRISB ;Change to Write Mode
movlw 0x00
movwf TRISB ;all outputs again
banksel PORTB
bcf PORTB,RW ;back to writing mode
return

The next subject is to include in the Category classification section of the code BS and CR key
detection part. This is done by simply adding a few lines of the entered key check. The addition
for these two keys is at the bottom of this category classification part of the code.

;Category detection
CAT clrf STATUS

movf DATAreg,0
xorlw 0xE0
btfsc STATUS,ZERO
goto Begin ;E0 keys (CAT2) are ignored

;Shift Key Detection
clrf STATUS
movf DATAreg,0
xorlw 0x12
btfsc STATUS,ZERO
goto LRSHIFT
clrf STATUS
movf DATAreg,0
xorlw 0x59
btfsc STATUS,ZERO
goto LRSHIFT

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

306

clrf STATUS
movf DATAreg,0
xorlw 0x58 ;CAPS LOCK
btfsc STATUS,ZERO
goto CAPS

movf DATAreg,0
clrf STATUS ;CR check
xorlw 0x5A
btfsc STATUS,ZERO
goto CRhandle

movf DATAreg,0
clrf STATUS
xorlw 0x66
btfsc STATUS,ZERO
goto BShandle ;Back Space Handling

So when the BS is entered we handle the case by executing the Bshandle part. CR would
jump to CRhandle. Let's discuss about handling when CR key is entered. When CR key is
entered, we read the next two frames (i,e, F0k and 0Dh break codes) from the keyboard and
ignore them, then we change the new cursor position to the first position at the next line.

Therefore we have to know the current cursor position stored in the DDRAM address. Once the
cursor position is read, we have to figure out at which line the cursor is located. The cursor
position is read in 7-bit format, however, when we set the cursor position by writing an
instruction (See above code table), the DB7 pin must be High, so as soon as we read the cursor
position address, we set the 7th bit (MSB) of the address, so that we directly write the address as
the new cursor position.

The CRhandle routine listed below shows how to find at which line the current cursor is
located by the DDRAM address read and to change the new cursor address to the first position of
the next line. In the routine, we notice that we use Borrow flag (which is same as the Carry flag
used in add instruction) in sub instruction to find the current line position of the cursor, by
employing sublw k instruction. The sublw k instruction is to have the operation of (k – W
→ W; subtract W from k and store the result to W) and check if k is bigger than W or not: if k is
bigger than W there is no Borrow so the Borrow flag in STATUS register is set. The Borrow
flag is kind of active low flag which clears when the condition is met. Conclusively, if the
Borrow bit is set, the k is bigger than W.

;CR handling
CRhandle

call RX11bit ;F0 read
call RX11bit ;CR reading again

;read the current cursor position
call readad4

;DDADDR has the content
;NOTE: MSB must be 1 in the cursor command

bsf DDADDR, MSB ;set the 7th bit
;if DDADDR<94, then new cursor position is C0
;if DDADDR<E8, then 80

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

307

;if DDADDR<C0, then D4
;if DDADDR<D4, then 94

clrf STATUS
movf DDADDR,0
sublw 0x94 ;k-W -->W
btfsc STATUS,Borrow ;No borrow means that k>W
goto CR94 ;is less than 94 i.e.,cursor is at line 1
clrf STATUS
movf DDADDR,0
sublw 0xC0
btfsc STATUS,Borrow
goto CRC0 ;cursor in at line 3

clrf STATUS
movf DDADDR,0
sublw 0xD4
btfsc STATUS,Borrow
goto CRD4 ;cursor is at line 2

clrf STATUS
movf DDADDR,0
sublw 0xE8
btfsc STATUS,Borrow
goto CRE8 ;cursor is at line 4
goto BEGIN ;cursor position out of range

CR94 call posline12 ;move the cursor to pos 1 line 2
goto begin

CRC0 call posline14 ;move the cursor to pos 1 line 4
goto BEGIN

CRD4 call posline13 ;move the cursor to pos 1 line 3
goto BEGIN

CRE8 call posline11 ;move the cursor to pos 1 line 1
goto BEGIN

The BShandle routine is not very different from CRhandle part. Once BS is entered, the
next two frames must read but ignored. What it does is just to reduce the cursor address by 1
and write a cursor position instruction to LCD so that the cursor is 1 place left shifted.

One glitch in this simple procedure is that, when the current cursor is at the first position of a
line, the new cursor should be moved to the last position of the line one above. Except that if the
cursor is located at the first position of line 1, there is no change and keep the current position
evne though BS action. Therefore, here again is where the current position is also an important
part of the routine.

The majority of the routine is, therefore, dedicated to find if the current cursor is at the first
position in any of 4 lines. If the cursor is not at the first position, we simply decrease the cursor
address by 1 and write it back for the new DDRAM address. The following routine is for the BS
key handler.

;BS Handling
BShandle

movf DATAreg,0 ;W holds $66

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

308

call RX11bit ;F0 read
call RX11bit ;BS break code

;read the current cursor position
call readad4

;DDADDR has the content
; SO move the current to the left
;NOTE: MSB must be 1 for commanding of the cursor position

bsf DDADDR, MSB
;if DDADDR = 94, then new cursor position is D3
;if DDADDR = C0, then new position is 93
;if DDADDR = D4, then new position is A7
;if DDADDR = 80, then new position is 80 (NO CHANGE)
; all other cases, new position is (DDADDR - 1)

clrf STATUS
movf DDADDR,0
xorlw 0x94
btfsc STATUS, ZERO
goto DD94 ;cursor in pos 1 line 3
clrf STATUS
movf DDADDR,0
xorlw 0xC0
btfsc STATUS,ZERO
goto DDC0 ;cursor in pos 1 line 2
clrf STATUS
movf DDADDR,0
xorlw 0xD4 ;cursor in pos 1 line 4
btfsc STATUS,ZERO
goto DDD4
clrf STATUS
movf DDADDR,0
xorlw 0x80
btfsc STATUS,ZERO
goto DD80 ;cursor in pos 1 line 1

;all others
decf DDADDR
decf CURSOR
movf DDADDR,0
call instw4
goto BEGIN

DD94 movlw 0xD3 ;move cursor to pos 20 line 2
decf CURSOR
call instw4
goto BEGIN

DDC0 movlw 0x93 ;move cursor to pos 20 line 1
decf CURSOR
call instw4
goto BEGIN

DDD4 movlw 0xA7 ;move cursor to pos 20 line 3
decf CURSOR
call instw4
goto BEGIN

DD80 movlw 0x80 ;move cursor to pos 1 line 1
call instw4

Chapter 10. Synchronous Serial Communication and Keyboard Connection

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

309

goto BEGIN

Except these new routines and subroutines, the code for this updated for CR and BS handling is
not different from the previous version. Make a full code and run the program to see if the CR
and BS keys are working as we intended them to work.

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

