Department of Electrical Engineering and Computer Science
Howard University

Washington, DC 20059

EECE404: Senior Design 11
Spring 2023

EECE404: Senior Design I1
Terminator
By:
Omaretsoguwa Atsagbede
Oshione Adams
Bella Kuete

Amiyah Brown

Faculty Advisor: Dr. Charles Kim

Date Assigned: 4/18/2023 Date Submitted: 4/25/2023

Summary

The project aims to reduce children's excessive phone usage by designing an interactive robot that
plays tic-tac-toe. The final design incorporates a Mega Pi board, two motors to move a pen holder in the x
and y planes, a ribbon system, and USB connectivity. The robot is capable of playing on a 10x10 grid and
has been tested thoroughly using different pen holders and various game moves to ensure reliability.

The team's development process involved multiple sprints, during which they focused on
software development, hardware assembly, and refining the device. Challenges included creating a smart
CPU function to counter player moves, finding a compatible pen holder, and training the CPU to make
intelligent decisions using the Minimax Algorithm. The team addressed these issues by conducting
extensive research and testing throughout the project timeline.

Overall, this interactive tic-tac-toe playing robot provides a stimulating alternative to screen time,
promoting cognitive development and enhancing social skills. While the current design allows for play on
a 10x10 grid, future iterations could expand to more complex games like chess. The project's success is
due to rigorous testing and commitment to addressing challenges and minimizing failure risk.

Problem Statement

Artificial Intelligence is the need of today’s generation because children are always on their
phone or don’t have someone to play with, which led us to create a robot that plays tic-tac-toe, so that
they can be productive and not be on their phones the whole day.

Design Requirement

Our Terminator project's design requirements have been carefully crafted to create a highly efficient and
user-friendly device. Our team has designed the system to work with various AC input voltages, ranging
from 100 to 240V, ensuring compatibility with multiple power sources. We've also focused on keeping the
final product lightweight and easy to handle, achieving a net weight of around 3.87 kg and a gross weight
of 4.475 kg. For programming, we'll be using Google Collab with Python, employing a brute force
approach without depending on any in-built libraries. Our project includes 1 Arduino and 1 Laserbot for
seamless control and operation, along with 2 motors for reliable movement and functionality. To refine
our Tic-Tac-Toe strategy, we'll be exploring a wide array of online documents and resources. We've given
careful thought to the device's physical dimensions, deciding on 535mm x 637mm x 184mm, and we aim
to reach a maximum working speed of 200mm/s. This sleek and efficient design is intended to meet our
project's goals while offering a delightful user experience.

Solution Design

| e
| |
« L]
A oy

motee L

Motor 2

Ourllr S0wIE
oacsk YO e

Peduiad

Kim
Typewritten Text

Kim
Typewritten Text

Kim
Typewritten Text

In the design depicted above, I've developed a device that incorporates various components, such as
motors, a Mega Pi board, a USB port, a power source, metallic bridges, ribbons, and metal frames. The
device uses two motors to control the pen's movement on both the x and y planes, with the pen holder
effortlessly sliding along a ribbon. A reliable power source ensures efficient device operation, and the
Mega Pi board's compatibility with both Arduino and Raspberry Pi makes it highly versatile and
user-friendly. The device is supported by four robust steel bridges that hold the movable components and
the Mega Pi board, while four metallic frames offer added stability. A USB port is integrated for easy
connection of the Mega Pi board to a computer, enabling seamless code execution. However, some
aspects of the design still need further exploration. One challenge we encountered was determining how
to enable the device to draw diagonal movements, or the z-axis, on the tic-tac-toe board, considering the
current design only permits movement along the x and y planes (horizontal and vertical planes). On a
positive note, the Mega Pi integration streamlines the operational process, as it is compatible with both
Raspberry Pi and Arduino platforms. Portability is somewhat limited, given the device's weight of 3.87
kg. Lastly, the device runs on an AC input voltage of 100-240V, reflecting an environmentally conscious
approach. It's crucial that we thoroughly investigate and address these concerns to ensure the device
operates at peak performance and delivers an outstanding user experience.

Project Implementation
Agile workflow:
WTM monberst frRophn Boon Kello Kgke , CBhore hdars broghed Umaretagea |

EECE404 Senior Design IT Assignment 2: Agile Workflow

Project Team Name Jec co®nator Project Title: Te(m?z\c.-l'o: Project

Increment 1: \Jok on optwace Godes) ensugm

Sprint #1
Period Dates: /’%- Re boocd ;CPU and pluger moses

(0430-28) - (02-80-1) sprioe#1 Reogerty -

- Delivery

Increment 2: Casuce e winniney Condition work

Sprint #2 Tesp eroperly:
Period Dates: =5 Increments 2 15 T ctenfag cndsten ks,

(2-43-23) - (02-2¢-23) spint #2 then M tie condittn woork, else lostng
ondthien

N Delivery

Increment 3: fosecnly ®e Vordware using

Sprint #3 Test tukosial vidzos abont & loser bot:
Period Dates: Increments 3+ 2 + 1: Crouce all hevdware
eliven

27-23) - (2513~ 3
(12-27-23) - (03-13-27) sprnt # Comqonents work pina.

Increment 4: Cneck if So¢toe andl vacdBo®

Sprint #4 /% Goengorent> ouce sync geopesdy -
Period Dates: Increments 4 +3 +2 + 1: Teshiy 3> to eww ¢ Re

(-0-33) - (@-24-7) - boods @ dioan ocuretely.

EECS Day

The project is divided into four sprints, each consisting of two increments, with specific weekly
development tasks to be completed within each increment. In the first sprint, the team will focus on
interfacing their code with the hardware, testing the overall system with both hardware and software, and
ensuring that the board, CPU, and player moves properly. In the second sprint, the team will ensure that
all winning conditions work, create a tie condition, and make a losing condition. The third sprint will
involve assembling the hardware using tutorial videos and testing each component to ensure everything
works fine. Finally, in the fourth sprint, the team will make sure that both the software and hardware
components connect with each other properly, and will test for accurate values drawn by the hardware.

Project Implementation Process

To build the device, the team will first assemble the frame, install the motors, and set up the ribbon
system. They will then mount the Mega Pi board and connect the motors to the board. Once the hardware
is in place, the team will power on the device and attach the pen holder. The next step is to implement
USB connectivity and develop/upload the code to the device. After the code is uploaded, the team will
modify the software to enable the device to play tic tac toe. This will involve programming the device to
recognize player moves, make its own moves, and follow the rules of the game. The team will test and
refine the system as needed to ensure proper functionality. Through this process, the team will have built a
functional device capable of playing tic tac toe.

SPRINT #1 [01-30-23 to 02-10-23]

For Sprint #1, our main focus was to make sure our software for the CPU and the player movements work
smoothly on a 10x10 game board. For our planned tasks, during week 1, we have done research to see
different Tic Tac Toe boards and to find a 10x10 game board version. From there, we created the game
board design and then we had to find requirements necessary for the winning, losing and drawing
conditions. During week 2, we finalize the movements for each piece on the tic tac toe board for our code.
We worked on the movements by the CPU, ensuring it makes proper countering moves. Finally, we had to
ensure board displays at the right positions for the X and O movements. What went well during this sprint
was that we were able to make the codes for the player 1 vs player 2 and make the codes for player 1 vs
CPU, which became our main code. Some of the tasks that were not completed were completing the
moves for the computer to counter the moves properly like if it is a real game. We also didn’t apply
machine learning for the computer to move on its own. We didn’t have enough time to teach the computer
to properly block the moves coming from Player 1 properly.

Input the x location: 5
Input the y location: 5
2] 1 2 3 4 5 6 7 E 9

xxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx

uuuuuuuuuuuuuuuuuuuuu

* *
* *
* *
* *
* *
* *
* *

x location: [] D:,:::*::z
10 x 10 Board for Playerl vs Player2

) 'playGame(10,10)

e 1 2 3 4 5
* ok ok ok ok ok ok ok ok ok Kk kK k ok ok k
Q% x ok ok x ok x ok X
* ok ok ok ok ok ok ok ok ok ok ok ok kK ok K X

k ok koK k ok ok ok ok ok ok ok ok k ok k K K K Xk
3k ok ok kx k ok ok ok ok ok
k ko k kK K Kk Kk kK Kk k ok k k k k k K K X
4 x * * * * * * * * * *
* k Kk koK Kk K K Kk Kk k k ok k Kk Kk K K X
5% k% ok ok ok x ok ok ok ok ok
% ok k kK k ok ok ok ok ok ok ok k k k k k K K X
6 *x * * * * * * * * * *
k ok k ok Kk Kk K K K K K ok k k k k K k K K X
7 % * * * * * * * * * *
K ok ok ok k kK ok ok ok ok ok ok ok ok ok ok k K % X
Bk ok x x x ok *k ok ok kx %
k ko k kK K K Kk ok ok ok ok k k k k k k K X X
9 x * * * * * * * * * *
* k Kk ok Kk Kk K K Kk Kk k k Kk k Kk Kk K K X

Player 1

e 10 x 10 Board for Playerl vs CPU

I attached three different tic-tac-toe boards, to show the progress from 3x3 player 1 vs player 2, to now

10x10 player 1 vs computer.
e 1 2 3 4 5

* %k % %k % k k %k k % k %

0 * * * * *

% k k k Xk % k Xk X %

*

o
<
o

* O

*
EE R R R I R R R R O R R R O
*
IEEREEEEESEERERERERSEXRX:]

*

*
* %
*
*
*

*
*
*
*
*

*

*
*
*
*
*

*

*
*
*
*

* O %

*

*
*
*

*
X
*

*

*

*
*
*
*
*

*

*
*
*
*
*

*

*

*
*
*
*

* k K K K kK K X
9 % ok k%

* k Kk Kk k k K X
Player 1

LN e st e B Here, on this 10 x 10 Board Player 1 vs The Computer, it shows the the
movements of ‘X’ and ‘O’ elements
Overall, in order for us to solve the issues, we had to research more and fully understand the techniques
in order to block the player 1 moves. We also ran and tested more codes to teach the CPU techniques to

*

*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

* 3k
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

* %
*
*
*
*
*
*
*
*
*
*

[EEREREREEEREREE RS EX"
KK K KK KK KKK KKK KKK KKK

KoK K K K K K KK K KKK K K KX
*

*

*
*
*

block the player 1 moves. In order to reduce failure we must test the codes more often and test the code
using very unique and different test cases.

SPRINT #2 [02-13-23 to 02-24-23]
For Sprint #2, our main focus was to ensure all the conditions in the code, such as the winning, losing, tie
were working properly. For our planned tasks, during week 1, we worked on the winning conditions and
focused on building rows, columns, right & left diagonals. During week 2, we worked on the losing and
draw conditions; if nobody wins, that would be because the board is full which will result in a draw.
@ def checkwin(tttboard,x,y,tar,ch):

if ciiiﬁr?yiitttboard,x,y,tar,ch):

elif checkcolumns(tttboard,x,y,tar,ch):
return True

elif checkrightdiag(tttboard,x,y,tar,ch):
return True

elif checkleftdiag(tttboard,x,y,tar,ch):
return True

else:
return False

Here is our code, which represents the different ways to win.
What went well during this sprint was that winning, losing, and draw conditions worked. The main tasks
that were not completed was the computer function and because of that, the moves were not moving as
smartly as we wanted it to.

if currPlayer:
tttboard[x][y] = "X"
if checkWin(tttboard, x, y, thresh, "X"): # check if X has won
drawBoard(tttboard)
won = "X wins" # won is no longer None. While loop breaks
continue
else:
tttboard[x][y] = "0"
if checkWin(tttboard, x, y, thresh, "0"): # check if Y has won
drawBoard(tttboard)
won = "0 wins" # won is no longer None. While loop breaks
continue

if nobody has won

drawBoard(tttboard) # show the updated board

plays += 1 # increase the number of those who have played
currPlayer = not currPlayer #change the player to the CPU

if people have played n*2 times, the whole board is filled.
it's a draw
if plays == n#k2:

won = “DRAW" Here, it is our code where if X has won the match, it will
print out X wins. If O wins, it will print out O wins. If nobody wins, then it will end in a draw.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

B T O T T T S
B T O T T T S
B T O T R T
* % kK ok ok ok ok k ok X ok k ok X ok X ok X * X
B T O T T T S
B T O T T T S
B T O T T T S
B T O T T T S
B T O T T T S
¥ % %k % ok ok % ok % % % %k % ok % %k % %k % % X

*

=
B
=)
7]

Here, this is an example of “X” winning diagonally, showing
how the winning condition works.

Overall, in order for us to solve the issues, we had to research on how to train the CPU function using the
minimax algorithm. Then, we must run the code numerous times with different test cases in order to
pinpoint errors in the code. For us to reduce failure risk, we had to test the codes at different increments to
make sure all of the conditions worked properly, test the code at different IDE’s and to do multiple test at
the end to verify that everything works.

SPRINT #3 [02-27-23 to 03-17-23]

For Sprint #3, our main focus was to assemble the hardware using tutorial videos about the laser bot.

For our planned tasks, during week 1, we took the time to watch and understand the hardware tutorial and
then work up to halfway through the assembling tutorial. During week 2, we finished assembling the

hardware all together and made sure all of the components of the hardware works and operates as it
should.

:u Tutorial Video - link to tutorial video

What went well during this sprint was that we were able to get both motors to work fine, since previously,
there was little voltage coming from the power source from one of the motors. The remaining of our
hardware components was fine and we were able to have the computer function work more successfully
and make smarter move from Sprint #2 works properly. The main tasks that were not completed

https://drive.google.com/file/d/1zDR0rkhlftF1zsl5rFz2ny2_ZBaB4UIN/view?usp=sharing

successfully was removing the laserbot lasers with a pen holder, since we weren’t able to find a pen
holder that was compatible with the laserbot.

*

*
*
*
*
*

*
*
*
*

*
*
*

* O %
*

*

¥ X X X ¥ X ¥ X ¥ ¥
*
*

* X *

X %k Kk k % k %k k k Xk k X
5% % x *x ko
X %k k k % k %k %k k X k %
6 % * x *x ok
% %k Kk k X k %k k % % k X k %
7% % *x *x *x *x %k
% %k %k k % k %k k % % k X k %
8 x * *x *x kx *x 9k
% k % %k % k k %k k % %k % %k k % ¥
9% *x *x k >k *x >k %
% k % %k % k k % k % %k % %k k % *
Player 1

Input the x location: []
10 x 10 Board Player 1 vs CPU from Picture of the laserbot from LKD
Sprint #2

*
*

*
¥R K X X X X X X X X X X X X X X
*
*
*

*
*
*
*
*
*
kX k
*
*
*
*
*
*
*

*
*
*

*
¥ X K K K X K X K K K XK XXX X XX

*
XXX X X X X X X XXX XXX XXX XX

*

*

*

* *
X K K X K KK K X K KX KKK KK K KX

*

Overall, in order for us to solve the issues, we had to make sure to find a compatible pen holder and attach
it to draw out the board from the code. In order for us to reduce the failure risk, we had to test different
pen holders and we tested different play moves on the 10 x 10 board.

SPRINT #4 [03-20-23 to 04-11-23]

® Tic Tac Toe

In our recent sprint, we found out that the hardware just couldn't handle our code properly because of the
way the 10x10 board grid was set up — it was in a star format. To fix this, we had to tweak the code so that
it used straight lines around the board instead. You can see the change we made in the picture above.

During this sprint, we also focused on optimizing the CPU function to not only counteract the player's
moves, but also to proactively seek opportunities for victory. One of the key strategies we implemented
was to have the CPU prioritize keeping the board's center unoccupied, allowing it to take advantage of

that position when launching an offensive against the player. This strategy can also be seen in the image
above for spring #4.

Conclusion

In conclusion, the primary goal of this project was to help children reduce excessive phone usage by
introducing an interactive tic-tac-toe playing robot. Key design components included the Mega Pi board,
motors, and a pen holder, which enabled gameplay on a 10x10 grid. Future iterations of the project could
expand the robot's capabilities to more complex games like chess. The team conducted thorough testing,
including assessing different pen holders and game move strategies, to ensure the device's reliability and
minimize the risk of failure. The resulting tic-tac-toe robot offers numerous benefits for children, such as
providing a stimulating alternative to screen time, promoting cognitive development, enhancing social
skills, and presenting an engaging way to play a classic game.

References

° [1] S. Kelly, Python, PyGame, and Raspberry Pi Game Development. New York: Apress, 2019.

e [2]T. Wuand C. Yu, "Tic-tac-toe prediction based on machine learning methods," in 2022 5th
International Conference on Advanced Electronic Materials, Computers and Software
Engineering (AEMCSE), Wuhan, China, 2022, pp. 397-402, doi:
10.1109/AEMCSES5572.2022.00085.

e [3]D.B. Fogel, "Using evolutionary programming to create neural networks that are capable of
playing tic-tac-toe," in IEEE International Conference on Neural Networks, San Francisco, CA,
USA, 1993, pp. 875-880 vol.2, doi: 10.1109/ICNN.1993.298673.

e [4] Agmed, tech_support, and System, "Laserbot laser Makeblock," Makeblock Forum, Aug. 06,
2020. [Online]. Available: .

° [5] Real Python, "Build a tic-tac-toe game engine with an Al player in python," Real Python, Feb.
24,2023. [Online]. Available:

. [6] "About MegaPi — makeblock help center." [Online]. Available:
https://support.makeblock.com/hc/en-us/articles/4412894483095-About-MegaPi.

https://forum.makeblock.com/t/laserbot-laser-upgrade/17029
https://realpython.com/tic-tac-toe-ai-python/
https://support.makeblock.com/hc/en-us/articles/4412894483095-About-MegaPi
https://support.makeblock.com/hc/en-us/articles/4412894483095-About-MegaPi

