Deliveroid Enhancement

Mohammed Akinabyo Anthony Berry LaDelwyn Mealey

Background

- Deliveroid enhancement from last year's project
- Purpose of deliveroid is to deliver food across campus
- Dissatisfied condition: deliveroid is not autonomous

• Our goal: make necessary enhancements to allow autonomous delivery

Problem Statement

- Problem: current robot is not able to drive automatically or detect/avoid obstacles
- Approach to problem: equip the robot with cameras and program in obstacle avoidance algorithms.
 - This will allow the robot to drive on its own smoothly and avoid obstacles.

Problem Statement

- Primary Objective: Automate this delivery process with a small robot to be able to move around and avoid obstacles.
- Short-Term Goal: Have the deliveroid move around and capture pictures.
- Long-Term Goal: Have the deliveroid to be able to move around varying sizes of groups of students without interrupting them while capturing pictures.

- Design Idea 1:
 - Two ultrasonic sensors (one in the front, one in the back
 - Two cameras (one in the front, one in the back)
 - Laptop used to communicate with robot

• Design Idea 2:

- Three ultrasonic sensors (one in the front, one on the right, one on the left)
- One camera (in the front)
- Phone app used to communicate with robot

Design Idea 1

Design

Idea 2

Sub	Pros	Cons
Sub - 1	 A camera in the front and back would help the robot detect objects in front of it and behind it The two sensors would alert the robot of these objects to help it steer away from them 	 Additional cameras may be needed on the sides to detect objects on the side of the robot as well.
Sub - 2	 This design only requires one camera, lowering cost. The sensors would allow it to gather as much data as possible 	 There is virtually no vision for the back of the robot Wiring up 3 sensors could require implementing an input controller

Pros & Cons

- Top solution design selection: Design Idea 2
 - Modification: Laptop will be used for communication via web application (from idea 1)

	Wt	Sub 1 Score	Agg Score	Sub 2 Score	Agg Score
Functionality	4	3	12	4	16
Connectivity	4	4	16	3	12
Mobility	4	5	20	5	20
Visibility	5	3	15	4	20
Total			63		68

Final Solution

Hardware Components

Software Components

Pathfinding Algorithm

Visibility Graph - VGRAPH

- · Start, goal, vertices of obstacles are graph nodes
- Edges are "visible" connections between nodes, including obstacle edges

Source:

http://www.cs.columbia.edu/~allen/F17/NO TES/lozanogrown.pdf

Realtime Optimization? Efficiently Recursive?

Conclusion

- The robot will be enhanced with cameras and sensors
- This will provide obstacle avoidance and autonomous delivery
- Two design ideas were proposed
- Design idea 2 was chosen

Conclusion

- Design idea 2:
 - One camera in the front
 - One sensor on the left, right, front of deliveroid
 - Laptop used to communicate with deliveroid
 - GPS module / coordinates will be used to direct robot
 - P3AT frame ; 9V power supply
 - Raspberry Pi used to connect cameras and sensors

Questions?