WWW.MWFTR.COM

9. Team Project & Summary

Charles Kim, "Lecture Note on Analysis and Practice for Renewable Energy Micro Grid Configuration," 2013. www.mwftr.com

What we have learned so far

HOMER

Editing an example code

☑ Resources and components

Simulation ("calculate") and Optimization

☑Result interpretation

Creating a design of code

⊠For your system

⊠Resources and components

Simulation and optimization

#We are ready to do something more our own !!

⊡Team Project (Now)

△Team Project Demonstration/Presentation (Tomorrow)

Team Design Project

Design a Hybrid Energy System (Grid may be connected)

- Site: Work (School or Company or store) team's consensus
- Hission/Goal: Energy reduction, peak shaving, or zeroenergy system
- Big Objective: Find the optimum system with sensitivity analysis
- Components: Grid (optional), Converter, Wind Turbine, PV panel, Fuel Cells, Electrolyzer, and Hydrogen Tank
- Hoject Lifetime: 20 years
- # Fixed Cost: \$10,000
- K Load Study as realistic and true as possible
- ∺ Load Profile →
 - You may have to use your own load profile obtained from your work
- You need to provide resource data on your work location
 - Solar Radiation {provide also sensitivity}
 - Wind Speed (sensitivity)

HOUR	[kW]
0000-0100	10
0100-0200	10
0200-0300	10
0300-0400	10
0400-0500	10
0500-0600	20
0600-0700	20
0700-0800	150
0800-0900	140
0900-1000	140
1000 - 1100	140
1100-1200	140
1200-1300	100
1300-1400	140
1400-1500	140
1500-1600	140
1600-1700	100
1700-1800	100
1800-1900	30
1900-2000	30
2000-2100	30
2100-2200 2200-2300	20 10
2300-2400	10
2300-2400	10

3

Suggested Component Data – Wind and PV

₩Wind Turbine

Furhlander 30

- ⊠Size: 30 kW
- ⊠Lifetime: 20 years
- ⊠Quantity: 10: [0, 5, 10]
- Capital Cost: \$7,800 [for 1 unit]
- Replacement Cost: 10% of the Capital Cost
- ⊠O&M Cost/Year: 5% of the Capital cost

⊮PV Module

- ⊠Size: 200kW: [0,100,200,300] kW
- ⊠Derating Factor: 90%
- ⊠Lifetime: 20 years
- Capital Cost: \$5000/kW
- Replacement Cost: 10% of Capital Cost
- ⊠O&M: 1% of Capital Cost

Suggested Component Data – Hydrogen

- ∺ Electrolyzer
 - Size: 100kW: [0, 50, 100] kW
 - Lifetime: 20 years
 - Capital Cost: \$3000/kW
 - Replacement cost: 50% of Capital Cost
 - O&M Cost/Year: 5% of Capital cost

₭ Fuel Cell

- Size: 200kW: [0, 100, 200, 300] kW
- △ Lifetime: 30000 operating hours
- △ Capital Cost: \$5000/kW (or \$500/kW)
- Replacement Cost: \$0
- O&M cost: \$0.1/hour
- Hydrogen Tank
 - Size: 2000 kg: [0, 1000, 2000, 3000]kg
 - △ Lifetime: 25 years
 - Capital Cost: \$500/kg
 - Replacement Cost: 10% of Capital Cost
 - O&M Cost/year: 0.5% of the Capital Cost

Side Bar- Hydrogen Systems

- # Electrolyzer system converts electricity into hydrogen by electrolyzing water
- # Hydrogen is stored in steel tanks or geological cavern
- **#** Reconverted to Electricity using 2 methods:
 - Polymer Electrolyte Membrane (PEM) fuel cell
 - Hydrogen Expansion Combustion Turbine

Fuel	Cell Modeling
[₭] Fuel Cell In HOMER r	modeling:
Pick a generator	Futbinder 30
🔼 Type: DC	Pinav Lod 1
Fuel: Stored Hydrogen	1.553 kW/vd 22W resk Grd → ₽ 2 ↔ P → Fuel Cell
Generator Inputs	Conveter b DC
Note that the capital cost includes installation cost	
Cost Fuel Schedule Emissions	Cost Fuel Schedule Emissions
Costs Size (kW) Capital (\$) Replacement (\$) 08M (\$	Fuel curve \$/hr) Fuel 2€ Stored hydroge ▼ Details Now
200.000 1000000 0 0	Intercept coeff. (kg/hr/kW rated) 0.08 (_)
Properties Description Fuel Cell Type C AC	
Abbreviation Label (* DC Derating factor (%) 70	Colive with binness
	Help Cancel OK 7
Suggested Com	nponent Data – Converter
Suggested Corr ≆ Converter	nponent Data – Converter
Converter	
Converter Size: 200kW: [0, 100, 2	
Converter Size: 200kW: [0, 100, 2 Lifetime: 20 years	200, 300]kW
 Converter Size: 200kW: [0, 100, 2 Lifetime: 20 years Efficiency: 90% Capital Cost: \$1000/kW Replacement Cost: 30 	200, 300]kW N % of Capital Cost
 Converter Size: 200kW: [0, 100, 2 Lifetime: 20 years Efficiency: 90% Capital Cost: \$1000/kW Replacement Cost: 30 O&M Cost/Year: 10% of 	200, 300]kW N % of Capital Cost
 Converter Size: 200kW: [0, 100, 2 Lifetime: 20 years Efficiency: 90% Capital Cost: \$1000/kW Replacement Cost: 30 O&M Cost/Year: 10% Grid (Optional) 	200, 300]kW N % of Capital Cost
 Converter Size: 200kW: [0, 100, 2 Lifetime: 20 years Efficiency: 90% Capital Cost: \$1000/kW Replacement Cost: 30 O&M Cost/Year: 10% Grid (Optional) Single rate 	200, 300]kW N % of Capital Cost
 Converter Size: 200kW: [0, 100, 2 Lifetime: 20 years Efficiency: 90% Capital Cost: \$1000/kW Replacement Cost: 30 O&M Cost/Year: 10% of Grid (Optional) Single rate Price (\$/kWh): \$0.15 : 	200, 300]kW W % of Capital Cost of Capital Cost
 Converter Size: 200kW: [0, 100, 2 Lifetime: 20 years Efficiency: 90% Capital Cost: \$1000/kW Replacement Cost: 30 O&M Cost/Year: 10% Grid (Optional) Single rate Price (\$/kWh): \$0.15 : Sellback (\$/kWh): \$0 	200, 300]kW W % of Capital Cost of Capital Cost
 Converter Size: 200kW: [0, 100, 2 Lifetime: 20 years Efficiency: 90% Capital Cost: \$1000/kW Replacement Cost: 30 O&M Cost/Year: 10% of Grid (Optional) Single rate Price (\$/kWh): \$0.15 : 	200, 300]kW N % of Capital Cost of Capital Cost 0.15

Analysis Points and Team Presentation

Analysis Points:

Site Identification → Mission or Goal

 \bigtriangleup Load study \rightarrow Should match with the site and the goal

Find the Solar Radiation, and give Sensitivity values

- Find the Wind Speed, and give sensitivity values
- Calculate and Check the Optimization results
- Check the Sensitivity Results
- Find the optimum results
- Find the components/devices locally available (Important)
- Prepare Slides for team presentation (Tomorrow morning)
 System Site, Location, etc (+ Real components and vendor info)
- Also run the HOMER in the presentation

Example 4 Cases

₭ Case 1: Neo-Power (2)

- 🗠 Kwang Hyun Ahn
- 🗠 Hyun Jun Lee
- 🔼 Island
- 🗠 Zero-Energy

Case 2: Green Campus (2)

- 🗠 Hyun Wook Kim
- 🗠 Yong Taek Oh
- Energy cost impact to the renewable source penetration to university campuses
- Cost of Energy

4 Cases - Continued

Case 3: Renewable sourced

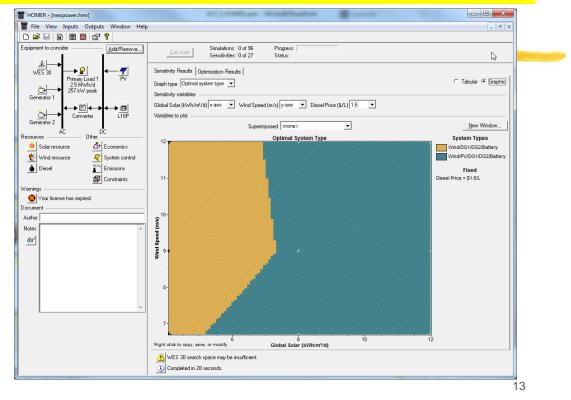
pump system (2)

- 🖂 Jae Bum Park
- ⊡Jung Woon Ahn
- Supply drinking water to a Mong village

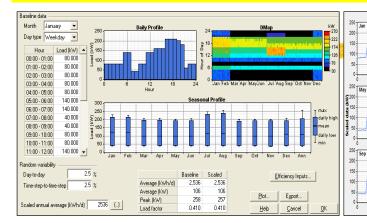
Case 4: Yonhwa Island (3)

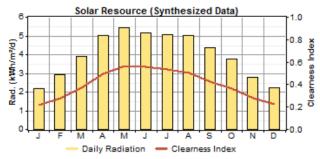
- ⊠Su Hyun Lee
- ⊡Suk Muk Hong
- ⊡ Il Dong Kim
- Zero-energy energy selfsustainability (Energy Independence)

Case 1: Zero-Power


- 🔀 Site: Gapa-do Island
- Analysis of Carbon Free Island program for Gapa-do

GAPA-DO ISLAND


- An island between the main Cheju Island and Mara-do
- 130 households with population at 312
- Peak load: 244kW
- Existing Generation:
 - 150kW Diesel Generator (x 3)
 - Annual energy: 1090MWh/yr



Case 1 - Homer Simulation

Case 1 - Simulation Input data

Emissions

12 18 24

12 18

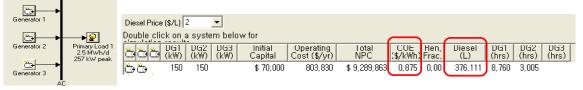
-

Carbon dioxide penalty:	\$ 1.5/t
Carbon monoxide penalty:	\$ 0/t
Unburned hydrocarbons penalty:	\$ 0/t
Particulate matter penalty:	\$ 0/t
Sulfur dioxide penalty:	\$ 0/t
Nitrogen oxides penalty:	\$ 0/t

Scaled data Daily Profile

50-

50-

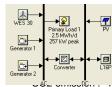

6 12

18 24 0

Case 1 - Simulation Result

₭ Case 1

- Diesel Generators Only (existing system)



* CO2 emission : 1000 t/yr

Case 2

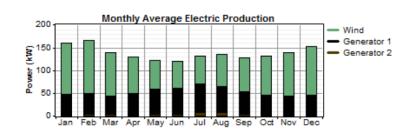
- Diesel Generator - WT - PV - Battery

...3 t/yr

Global Solar (kWh/m?d) 4.06	▼ Wind	Speed (m	/s) 6.7	– D	iesel Price (\$/L)2 🔻	CO2 Penalty (\$/	t) 1.5	•			
Double click on a system below for Categoriz: C Overall												
	ES3L DG (kW	DG2) (k₩)	L16P	Conv, (k₩)	Initial Capital	Operating Cost (\$/yr)	Lotal NPC	COE (\$/kWh)	Hen. Frac	Diesel (L)	DG1 (hrs)	DG2 (hrs)
ዋ 🛦 🖒 📩 🗇 🖾 100	1 15	D 150	240	400	\$ 3,922,000	369,524	\$ 8,160,408	0, 769	0, 70	156,775	4,646	421

Case 1 – System Output

System architecture


Wind turbine	1 WES 30
Generator 1	150 kW
Generator 2	150 kW
Battery	240 Trojan L16P
Inverter	400 kW
Rectifier	400 kW
Dispatch strategy	Cycle Charging

Cost summary

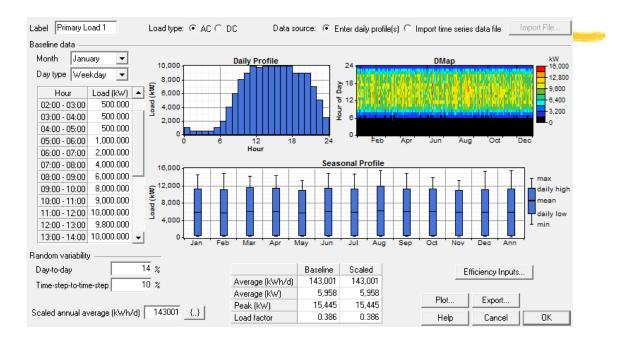
Total net present cost	\$ 7,375,346
Levelized cost of energy	\$ 0.695/kWh
Operating cost	\$ 344,671/yr

Net Present Costs

Commonweat	Capital	Replacement	O&M	Fuel	Salvage	Total
Component	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)
WES 30	3,200,000	133,525	367,038	0	-66,518	3,634,045
Generator 1	30,000	10,270	0	3,094,466	-233	3,134,502
Generator 2	30,000	0	0	270,646	-251	300,395
Trojan L16P	72,000	40,796	0	0	-1,483	111,313
Converter	80,000	10,014	91,759	0	-4,989	176,785
Other	10,000	0	8,308	0	0	18,308
System	3,422,000	194,606	467,105	3,365,111	-73,475	7,375,348

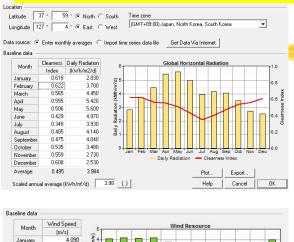
Emissions

Pollutant	Emissions (kg/yr)
Carbon dioxide	482,863
Carbon monoxide	1,192
Unburned hydocarbons	132
Particulate matter	89.8
Sulfur dioxide	970
Nitrogen oxides	10,635


Case 1- Carbon tax: status [in US\$]

Country	Carbon Tax
Denmark	 1993: 50% Carbon Tax introduction 1996: Introduction of Carbon Tax on Natural Gas Carb Tax: \$1 - 6/CO2.ton (2004)
Germany	 1999: Increased rate on the Special mineral oil tax on gasoline, PLG, and Natural Gas Carbon Tax : \$ 0.5- 20/CO2.ton (2004)
United Kingdom	 2001: Taxation on LPG, cola, natural gas, and electricity Carbon Tax: : \$ 0.3- 2.5/CO2.ton (2004)
France	\cdot Carbon Tax: As of 2004, under review after the verdict of violation of the constitution on General Tax on Pollution Activities (TGAP)
New Zealand	Carbon Tax: \$ 10.67/CO2.ton (2005) was approved by an act, however, the tax collected is currently being used to lower other taxes.
USA (Colorado)	 First Carbon taxation in the US in April 2007. Carbon Tax: \$7/CO2.ton, which amount to \$1.33\$/m to each household. Households with renewable installation could get reduction.
Canada (Quebec)	Carbon Tax: Taxation started in 2007 for petroleum, coal, and natural gas, and the annual amount is expected to reach at \$200M.
Canada (Vancouver)	Carbon Tax: \$0.025/L on gasoline, diesel, and natural gas from July 2008.

Case 2 – Green Campus


- # Green Campus Feasibility Study for Korea University
- Sestimation of the grid electricity cost for renewable energy penetration to college campuses
- Available data: Real time measurement and display of the Campus
 - Average Power Demand = 10,435 kW
 - Peak Power Demand = 15,637 kW

Case 2 – Load Profile

19

Case 2 - Inputs

Month	(m/s)	5 Wind Resource	
January	4.090		
February	4.190	¥3-	
March	4.120		
April	4.170		
May	3.750		
June	3.290	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov	Dec
July	3.270		
August	3.090	Other parameters Advanced parameters	
September	3.000	Altitude (m above sea level) 0 Weibull k	2
October	3.140	Anemometer height (m) 50 Autocorrelation factor	0.85
November	3.700		
December	3.960	Variation With Height Diurnal pattern strength	0.25
	age: 3.644	Hour of peak windspeed	15

Help Cancel OK

Grid

Rate	Power Price	[
Rate	\$/kWh	ľ	
Rate W_2	0.04, 0.50, 1.00, 2.00, 3.00		

Sellback Rate	Demand Rate
\$/kWh	\$/kW/mo.

CO2 emissions factor:	632 g/kWh
CO emissions factor:	0 g/kWh
UHC emissions factor:	0 g/kWh
PM emissions factor:	0 g/kWh
SO2 emissions factor:	2.74 g/kWh
NOx emissions factor:	1.34 g/kWh
Interconnection cost:	\$0
Standby charge:	\$ 0/yr
Purchase capacity:	1,000 kW
Sale capacity:	1,000 kW

Case 2 – Optimal Configuration

Sensitivity Results Optimization Results

Double click on a system below for optimization results,

Hate W_2 'rice (\$/kWh)	174) 👛 🖻 🛛		V 1,5s ₩)	I FC (kW	; S4K /)	.S25P C (onv, Ele kW) (kW	c, H2 1; /) (kg		Initial Capital	Operating Cost (\$/yr)	Lotal NPC	3		Hen, Lia Frac, Sh	apac norta
0,040	4									1000	\$ 1,000	318,930	\$ 3,659,	096	0,040	0,00	0,9
0,500	≮									1000	\$ 1,000	3,986,619	\$ 45,727,	204	0,500	0,00	0,9
1,000	≮									1000	\$ 1,000	7,973,238	\$ 91,453,	408	1,000	0,00	0,9
2,000	≮									1000	\$ 1,000	15,946,475	\$ 182,905		2,000	0,00	0,9
3,000	≮									1000	\$ 1,000	23,919,712	\$ 274,358		3,000	0,00	0,9
4,000	≮									1000	\$ 1,000	31,892,950	\$ 365,810		4,000	0,00	0,9
5,000	iri a									1000	\$ 1,000	39,866,184	\$ 457,263		5,000	0,00	0,9
Sensitivity	v Results	Optimiza	tion F	Results													
Sensitivity	y variables	·															
Rate W_2	Power Price	(\$/kWh) [.04	•													
Double cli	ick on a sy	stem belo	ow fo	r													
千 ¶未		PV 1.8 (kW)	bsl (FC S4⊭ (k₩)	(S25P	Conv. (k₩)	Elec, H (kW)	12 Lank (kg)	Girid (kW)	Initial Capital	Operating Cost (\$/yr)	l otal NPC	COE (\$/kWh)	Hen, Frac,	L'apaci Shorta,	ty FC (hrs)	Ī
不									1000	\$ 1,000	318,930	\$ 3,659,096	0,040	0,00	0,9	5	-
不干	🖻 🗹				36	30			1000	\$ 577,000	368,255	\$ 4,800,859	0,052	0,00	0,9	5	
 ≮	🥙 🗵			200		30	100		1000	\$ 40,001,	310,027	\$ 43,556,988	0,476	0,00	0,9	50	
イー	🐉 🗇 🖂			200	36	30	100		1000	\$ 40,577,	359,353	\$ 44,698,752	0,488	0,00	0,9	50	
17	12	10				30,			1000	\$ 50,001,	2,809,364	\$ 82,224,184	0,351	0,64	0,7	1	
本有	🗂 🗹	10			36	30,			1000	\$ 50,577,	2,858,782	\$ 83,367,000	0,355	0,64	0,7	1	
本本			5						1000	\$ 60,001,	3,384,223	\$ 98,817,768	0,759	0,34	0,8	8	
本 本	🗂 🗹		5		36	30			1000	\$ 60,577,	3,434,068	\$ 99,965,488	0,767	0,34	0,8	3	
147	🌮 🖂	10		200		30	100		1000	\$ 90,001,	2,800,462	\$ 122,122,	0,521	0,64	0,7	1 0	
147	🥐 🗇 🖄	10		200	36	30	100		1000	\$ 90,577,	2,849,880	\$ 123,264,	0,525	0,64	0,7	1 0	
本 本	🥐 🗵		5	200		30,	100		1000	\$ 100,001	3,375,320	\$ 138,715,	1,065	0,34			
本 本	🥐 🗇 🔀		5	200	36	30,	100		1000	\$ 100,577	3,425,165	\$ 139,863,	1,073	0,34	0,8	B 0	
47 *	2	10	5			30,			1000	\$ 110,001	5,846,951	\$ 177,065,	0,657	0,71	0,6		
千甲未	🖻 🗹	10	5		36	30			1000	\$ 110,577	5,896,991	\$ 178,215,	0,661	0,71	0,6		
千甲未	🥐 🗵	10	5	200		30	100		1000	\$ 150,000,	5,838,046	\$ 216,962,	0,805	0,71	0,6		
千甲未	🥐 🗇 🖄	10	5	200	36	30	100		1000	\$ 150,576,	5,888,088	\$ 218,112,	0,809	0,71	0,6	4 0	

Case 2 – System Output

System architecture

PV Array 10,000 kW Grid 1,000 kW Inverter 20,000 kW Rectifier 20,000 kW

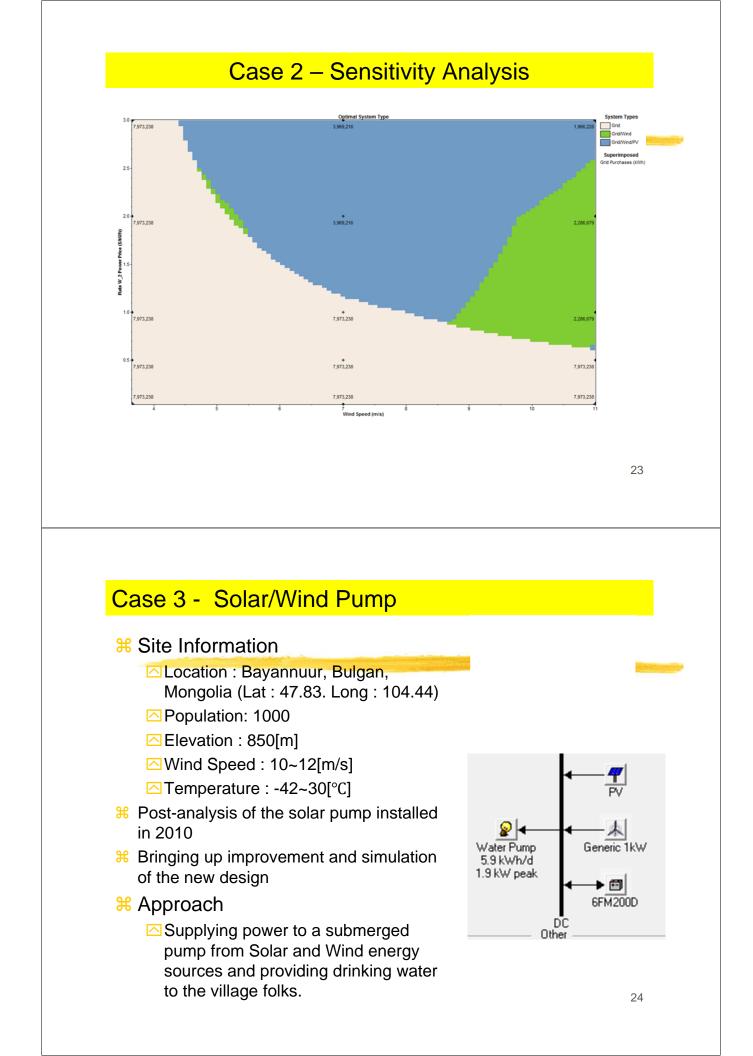
Cost summary

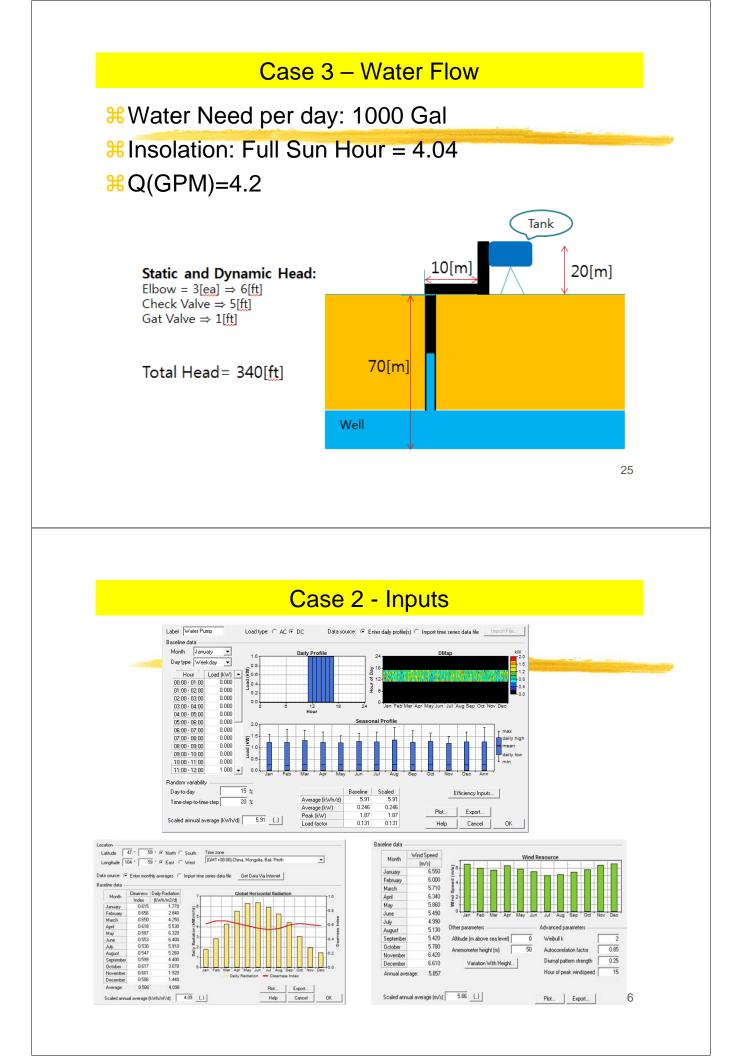
Total net present cost	\$ 28,836,126
Levelized cost of energy	\$ 0.123/kWh
Operating cost	\$ 334,364/yr

Net Present Costs

Commonant	Capital	Replacement	O&M	Fuel	Salvage	Total
Component	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)
PV	25,000,000	0	286,748	0	0	25,286,748
Grid	0	0	3,548,379	0	0	3,548,379
Converter	0	0	0	0	0	0
Other	1,000	0	0	0	0	1,000
System	25,001,000	0	3,835,127	0	0	28,836,128

Annualized Costs


Annuanzeu	00313					
Component	Capital	Replacement	O&M	Fuel	Salvage	Total
Component	(\$/yr)	(\$/yr)	(\$/yr)	(\$/yr)	(\$/yr)	(\$/yr)
PV	2,179,614	0	25,000	0	0	2,204,614
Grid	0	0	309,364	0	0	309,364
Converter	0	0	0	0	0	0
Other	87	0	0	0	0	87
System	2,179,701	0	334,364	0	0	2,514,065

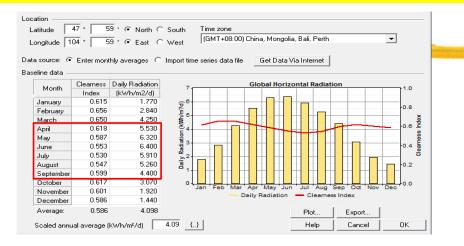

Electrical

Component	Production	Fraction
Component	(kWh/yr)	
PV array	13,973,497	64%
Grid purchases	7,893,502	36%
Total	21,867,000	100%

Emissions

Pollutant	Emissions (kg/yr)
Carbon dioxide	4,972,574
Carbon monoxide	0
Unburned hydocarbons	0
Particulate matter	0
Sulfur dioxide	21,558
Nitrogen oxides	10,543

Case 3 -- Optimization


#Best Combination:

₩2.2[kW] PV + 1[kW] Wind Turbine

Sensitivity variables Global Solar (kWh/m?d) 4.09 Wind Speed (m/s) 5.86 • Double click on a system below for ۲V G1 6FM2000 COE | Hen, Initial Operating I otal (kW) Capital Cost (\$/yr) NPC (\$/kWh) Frac. 5 2,2 \$ 15,220 43 \$ 15,769 1 0,572 1,00 Ð 2,4 1 5 \$ 15,520 43 0,583 1,00 Ð \$ 16,073 2,8 4 1 \$ 15,636 41 0,586 1,00 Ē \$ 16,161

27

Case 3 - Sensitivity Analysis

Sensitivity variables _

Global Sol	lar (kWh/r	n?d) 5	–	Wind Speed (n	n/s) 5.86 🛛 💌			
Double c			n below f	or				
7 🙏 🖻	PV (kW)		FM200D	Initial Capital	Operating Cost (\$/yr)	Lotal NPC	COE (\$/kWh)	Hen, Frac,
9 🖻) 3,0		5	\$ 6,920	19	\$ 7,163	0,260	1,00
	1,6	1	5	\$ 14,320	42	\$ 14,856	0,539	1,00
 ¶ 🛦 🖻	1,8	1	5	\$ 14,620	42	\$ 15,161	0, 550	1,00

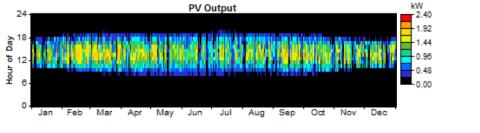
In consideration of the months

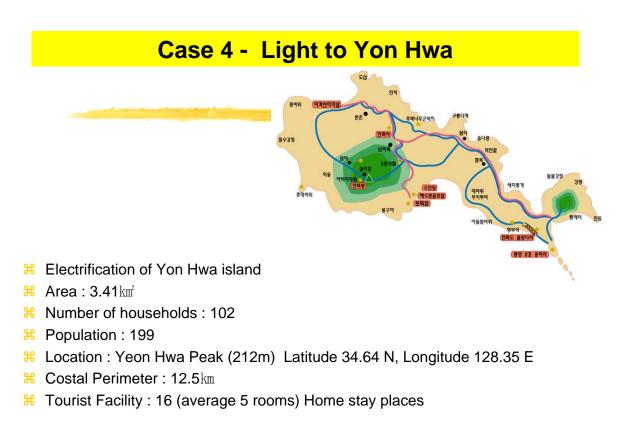
Between April and September,

 \Rightarrow 3[kW] PV is most economical

Case 3 - System Report

System architecture


PV Arra	y 2 kW
Battery	6 Vision 6FM200D

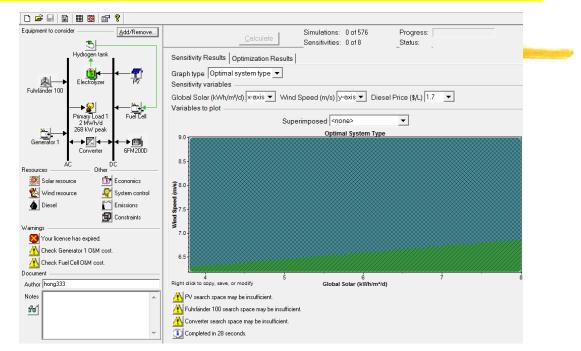

Cost summary

Total net present cost	\$ 6,162
Levelized cost of energy	\$ 0.298/kWh
Operating cost	\$ 20.2/yr

Net Present Costs

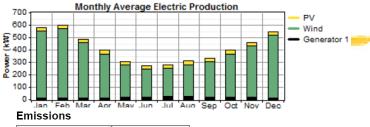
Component	Capital	Replacement	O&M	Fuel	Salvage	Total
Component	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)
PV	3,000	94	0	0	-52	3,041
Vision 6FM200D	2,904	251	0	0	-34	3,121
System	5,904	344	0	0	-86	6,162
			DV O			

Transportation: 1 hour by ferry from Tong Young


Emissions

Pollutant	Emissions (kg/yr)
Carbon dioxide	0
Carbon monoxide	0
Unburned hydocarbons	0
Particulate matter	0
Sulfur dioxide	0
Nitrogen oxides	0

Case 4 - Inputs


Case 4 – Configuration and Optimization

Case 4 – System Output

System architecture

PV Array	200 kW		
Wind turbine	15 Fuhrländer 100		
Generator 1	150 kW		
Battery	100 Vision 6FM200D		
Inverter	100 kW		
Rectifier	100 kW		
Hydrogen Tank	2,000 kg		
Dispatch strategy Cycle Charging			

Cost summary

Total net present cost	\$ 10,843,879		
Levelized cost of energy	\$ 1.156/kWh		
Operating cost	\$ 538,167/yr		

PollutantEmissions (kg/yr)Carbon dioxide395,568Carbon monoxide976Unburned hydocarbons108Particulate matter73.6Sulfur dioxide794Nitrogen oxides8,713

Net Present Costs

Component	Capital	Replacement	O&M	Fuel	Salvage	Total
	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)
PV	80,000	6,236	127,834	0	-3,495	210,575
Fuhrländer 100	225,000	3,755	57,525	0	-699	285,582
Generator 1	20,000	2,515	2,371,314	3,264,452	-423	5,657,858
Vision 6FM200D	3,636,300	1,006,874	89,484	0	-47,773	4,684,884
Converter	2,000	83	1,278	0	-16	3,346
Hydrogen Tank	1,000	0	639	0	0	1,639
System	3,964,300	1,019,463	2,648,074	3,264,452	-52,406	10,843,882

Electrical

Component	Production	Fraction	
Component	(kWh/yr)		
PV array	248,699	7%	
Wind turbines	3,221,259	89%	
Generator 1	155,664	4%	
Total	3,625,622	100%	

Team Project

₩We can do better this time

Analysis and Practice for Renewable Micro Grid Configuration

- Summary

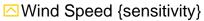
35

Course Contents and Schedule

Day 5:December 27, 2013

Team Project

Hybrid Renewable System Design
 Team Presentation
 Summary and Conclusions



Team Design Project

- # Design a Hybrid Energy System (Grid may be connected)
- Site: Work (School or Company or store) team's consensus
- # Mission/Goal: Energy reduction, peak shaving, or zero-energy system
- 8 Objective: Find the optimum system with sensitivity analysis
- Components: Grid (optional), Converter, Wind Turbine, PV panel, Fuel Cells, Electrolyzer, and Hydrogen Tank
- # Project Lifetime: 20 years
- # Fixed Cost: \$10,000
- K Load Study as realistic and true as possible
- ₭ Load Profile →
 - △ You may have to use your **own load profile** obtained from your work
- ¥ You need to provide resource data on your work location
 - Solar Radiation {provide also sensitivity}
 - Wind Speed {sensitivity}

Team Project - Brief

- Analysis of a Hybrid Energy System (Grid may be connected)
- Site: Your (School or Company or resort or ...)
- Big Objective: Find the optimum system with sensitivity analysis
- Components Considered: Grid, Converter, Wind Turbine, PV panel, Fuel Cells, Electrolyzer, and Hydrogen Tank
- ₭ Project Lifetime: 20 years
- # Fixed Cost: \$10,000
- Hoad Profile
- Resource data on your work location
 - Solar Radiation {provide also sensitivity}

Suggested Component Data – Wind and PV

Wind Turbine Ħ Size: 30 kW Quantity: 10: [0, 5, 10] **PV Module** Size: 200kW: [0,100,200,300] kW Derating Factor: 90% # Electrolyzer ⊠ Size: 100kW: [0, 50, 100] kW △ Lifetime: 20 years ₩ Fuel Cell Size: 200kW: [0, 100, 200, 300] kW Hydrogen Tank ⊠ Size: 2000 kg: [0, 1000, 2000, 3000]kg ∺ Converter Size: 200kW: [0, 100, 200, 300]kW Grid (Optional) Single rate Price (\$/kWh): \$0.15 : Sellback (\$/kWh): \$0.15 Demand: \$0 Purchase Capacity: 300kW Sellback Capacity: 200kW

39

Analysis Points and Team Presentation

Analysis Points:

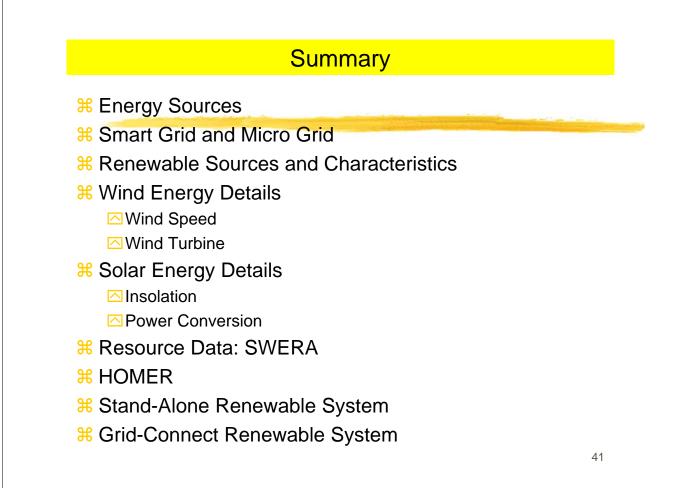
 \bigtriangleup Site Identification \rightarrow Mission or Goal

 \square Load study \rightarrow Should match with the site and the goal

Find the Solar Radiation, and give Sensitivity values

Find the Wind Speed, and give sensitivity values

Calculate and Check the Optimization results


Check the Sensitivity Results

Find the optimum results

Find the components/devices locally available (Important)

Prepare Slides for team presentation

Also run the HOMER in the presentation

Summary

- Simulation Software HOMER (Hybrid Optimization Model for Electric Renewables)
- **HOMER** components
- **#HOMER** optimization by NPC
- HINPUT Requirements
- **#**Optimization Results
- **#**Sensitivity Analysis
- Example Cases: Stand-Alone and Grid-Connected
- **#**Team Project

Survey

1. My understanding in Micro Grid is:

¥ Very satisfactory (); Satisfactory (); neutral (); unsatisfactory (); very unsatisfactory ()

- 2. My learning gain in renewable energy sources and their characteristics is:
 - Very satisfactory (); Satisfactory (); neutral (); unsatisfactory (); very unsatisfactory ()
- **3**. My learning gain in micropower system design is:
 - Very satisfactory (); Satisfactory (); neutral (); unsatisfactory (); very unsatisfactory ()
- **#** 4. My learning gain in HOMER simulation is:
 - Very satisfactory (); Satisfactory (); neutral (); unsatisfactory (); very unsatisfactory ()
- 5. After the course, my skill in designing a renewable energy system is:
 - Much improved (); Improved (); I am not sure (); Very little improved (); Not improved at all ()

43	

