7. Micro-power System Modeling using HOMER - Part 1

Charles Kim, "Lecture Note on Analysis and Practice for Renewable Energy Micro Grid Configuration," 2013. www.mwftr.com¹

Course Contents and Schedule

🔀 Day 3

HOMER Simulation 1

⊠Input Requirements

Component Data Determination - – Diesel, Solar, Wind, and Battery

Simulation Details

△ Micro-Power System Design

⊠Off-grid system design --- Isolated System

⊠Combination of Renewable sources

Day 4

► HOMER Simulation 2

⊠Grid Data Details

⊠Grid-Connected System Design

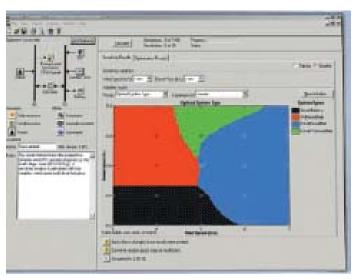
Team Practice

⊠ Isolated or Grid-Connected Power System Design

Day 5

⊠Team Presentation

⊠Summary and Conclusions


HOMER

Homer (Hybrid Optimization Model for Electric Renewables)

- SimulationOptimization
- **Sensitivity Analysis**

HOMER models micropower systems with single or multiple power sources:

Photovoltaics Wind turbines Biomass power Run-of-river hydro Diesel and other reciprocating engines Cogeneration Microturbines Batteries Grid Fuel cells Electrolyzers

Homer – a tool

A tool for designing micropower systems

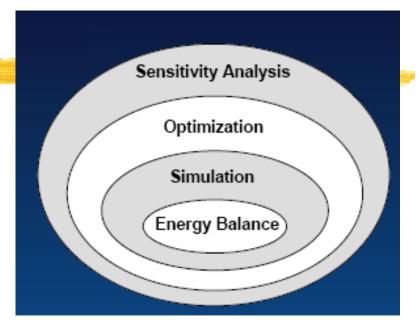
- Village power systems
- Stand-alone applications and Hybrid Systems
- 🔼 Micro grid
- Wind turbines
- PV
- Batteries
- Diesels
- Microturbines

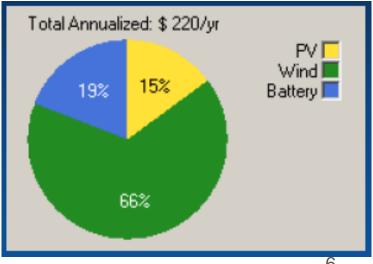
- Fuel cells
- Small hydro

- Small modular biomass
- Grid connection

Homer - capabilities

- Finds combination <u>components</u> that can <u>service a load</u> the <u>lowest cost</u> with answering the following questions:
 - Should I buy a wind turbine, PV array, or both?
 - ○Will my design meet growing demand?
 - △How big should my battery bank be?
 - ○What if the fuel price changes?
 - △How should I operate my system?
 - △And many others...


Homer - Features


- Simulation–Estimate the cost and determine the feasibility of a system design over the 8760 hours in a year
- Solution Simulate each system configuration and display list of systems sorted by net present cost (NPC)

└─ Life-Cycle Cost:

 Initial cost – purchases and installation
 Cost of owning and O&M and replacement

- NPC: Life-cycle cost expressed as a lump sum in "today's dollars"
- Sensitivity Analysis–Perform an optimization for each sensitivity variable

Features

Hydrogen tank

Electrolyzer

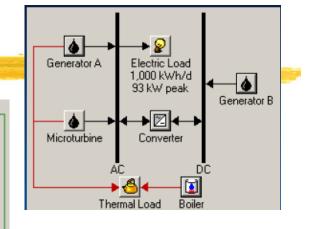
8

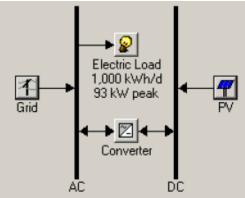
Electric Load

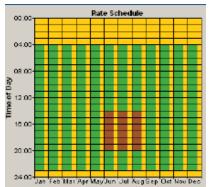
200 kWh/d

14.5 kW peak

DC

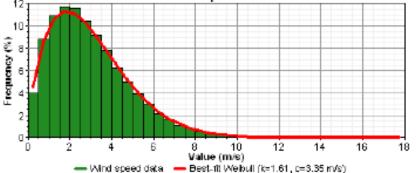

PV.

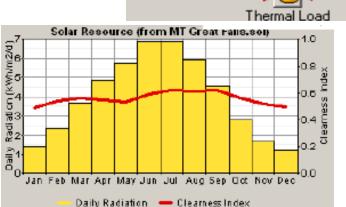

20


Fuel Cell

Homer can accept max 3 generators

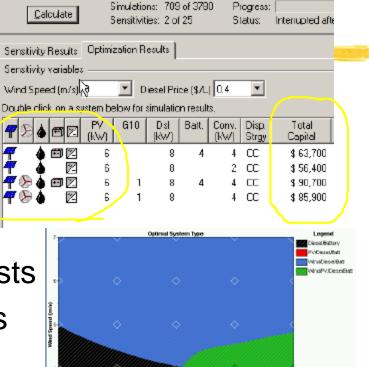
- Fossil Fuels
- Biofuels
- Cogeneration
- Renewable Technologies
 - 🔼 Solar PV
 - 🔼 Wind
 - Biomass and biofuels
 - 🗠 Hydro
- **#** Emerging Technologies
 - Fuel Cells
 - Microturbines
 - 🗠 Small Modular biomass
- **#** Grid Connected System
 - Rate Schedule, Net metering, and Demand Charges
- **#** Grid Extension
 - Breakeven grid extension distance: minimum distance between system and grid that is economically feasible





7

Features H Loads Hydrogen tank Hydrogen load Electrical • 🐣 Electrolyzer △ Thermal Hydrogen Primary Load 1 10 kWh/d **H** Resources • 😥 Primary Load 2 2 kWh/d Generator ⊠Wind speed (m/s) Solar radiation (kWh/m²/day) Deferrable Load 5 kWh/d Stream Flow (L/s) ✓ Fuel price (\$/L) AC Thermal Load Boiler Wind Speed PDF Solar Resource (from MT Great Fails.sol) 12 1.0



8

How to use HOMER

- 3 1. Collect Information
 - Electric demand (load)
 - Energy resources
- 2. Define Options (Gen, Grid, etc)
- 8 3. Enter Load Data
- 8 4. Enter Resource Data
- ₭ 5. Enter Component Sizes and Costs
- 86. Enter Sensitivity Variable Values
- **%** 7. Calculate Results
- 8. Examine Results
- Caveat: HOMER is only a model. HOMER does not provide "the right answer" to questions. It does help you consider important factors, and evaluate and compare options.

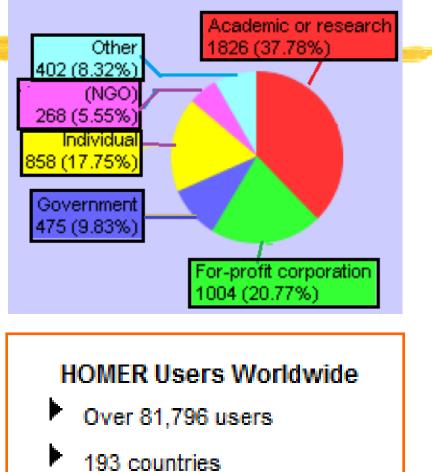
D.S Dissel Price (S.C.)

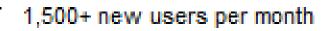
HOMER Users

₭ System designers:

evaluate technology options

Project managers:


evaluate costs of different options


Hogram managers:

explore factors that affect system design (resource availability, fuel price, load size, carbon emissions, etc.)

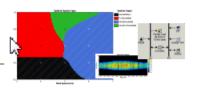
₭ Educators:

teach and learn about renewable energy technologies

HOMER software

High Homer Energy

+


(www.homerenergy.com)

HOMER - Analysis of micropow...

https://analysis.nrel.gov/homer/

Overview User Interface Version History User Testimonials Ask Tom (FAQs)

Downloads

Software (Visit HOMER Energy) Getting Started Guide (PDF File, 720 kB) Brochure (English) (PDF File, 964 kB) Brochure (Spanish) (PDF File, 1.3 MB)

NREL started developing HOMER in 1993 charge by more than 30,000 individuals and universities worldwide.

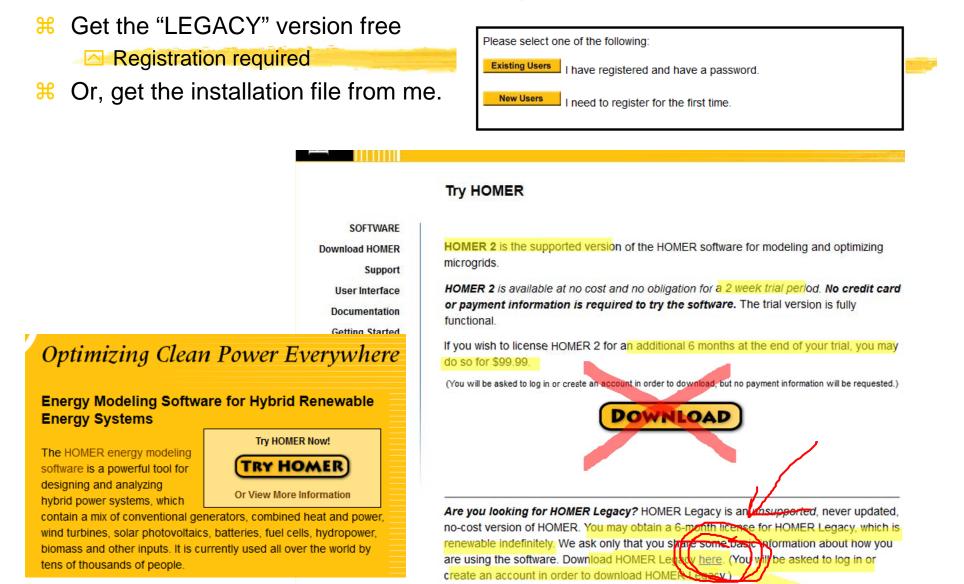
New Distribution Process for NREL's HOMER Model

Note! HOMER is now distributed and supported by HOMER Energy

HOMER is a computer model that simpli both off-grid and grid-connected powe distributed generation (DG) applications algorithms allow the user to evaluate the number of technology options and to a energy resource availability, and other renewable energy technologies:

Download Sites

NREL.gov/homer Homerenergy.com


SOFTWARF Download HOMER Support User Interface Documentation Getting Started Guide (PDF)

Software

HOMER is a computer model that simplifies the task of designing distributed generation (DG) systems - both on and off-grid. HOMER's optimization and sensitivity analysis algorithms allow you to evaluate the economic and technical feasibility of a large number of technology options and to account for variations in technology costs and energy resource availability. Originally

HOMER download

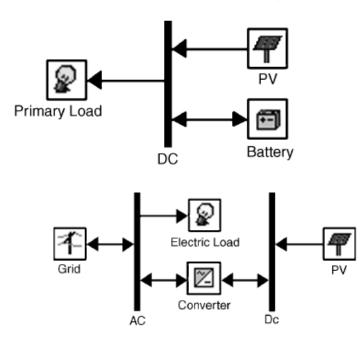
Please log in to download or renew HOMER software, download files, or update

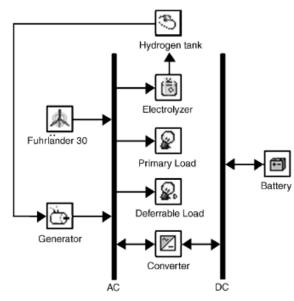
HOMER legacy for free

Download HOMER software

SOFTWARE	HOMER: The Hybrid Optimiza	tion Model for Electric Renewable	S
Download HOMER			
Support	Try HOMER free for 14 days	Free	Download
User Interface	Purchase a 6-month HOMER	¢00 ¢40	
Documentation	license	\$99- \$49 previous user discount	Buyitnow
Getting Started Guide (PDF)	*Download and install the trial before purchasing	J.	
Sample Files			
Bibliography (PDF)	Resources for HOMER Users	s, Sample Files, etc.	
Version History	Sample data files for HOMER	All Sample Files 🔹	Download
	Resource Files	TMY2 Solar data 💌	Download
	Legacy Software		
$\approx \rightarrow \rightarrow \rightarrow \rightarrow$	HOMER Legacy	Free	Download
	Renew HOMER Legacy (was HOMER 2.68)	Free	Renew
	VIPOR*	Free	Download
	* VIPOR optimizes the layout of wires and to documented or supported but you are welco	ransformers within a mini-grid. We offer it for free be	ecause it is not fully

HOMER - Intro


- HOMER (Hybrid Optimization Model for Electric Renewables): Micropower Optimization computer model developed by NREL.
- # "Micropower system": a system that generates electricity, and possibly heat, to serve a nearby load.→ Micro Grid
 - △A solar-battery system serving a remote load
 - △a wind–diesel system serving an isolated village
 - △a grid-connected natural gas micro-turbine providing electricity and heat to a factory.
- Hodels power system's physical behavior and its lifecycle cost [installation cost + O&M cost]
- **#** Design options on technical and economic merit


HOMER – Principal 3 tasks

- Simulation: HOMER models the performance of a particular micropower system configuration each hour of the year to determine
 - ➢ its technical feasibility (i.e., it can adequately serve the electric and thermal loads and satisfy other constraints) and
 - ☐ life-cycle cost.
- Solution: HOMER simulates many different system configurations in search of the one that satisfies the technical constraints at the lowest life-cycle cost.
 - Optimization determines the optimal value of the variables such as the mix of components that make up the system and the size or quantity of each.
- Sensitivity Analysis: HOMER performs multiple optimizations under a range of input assumptions to gauge the effects of uncertainty or changes in the model inputs such as average wind speed or future fuel price

Simulation

- He simulation process determines how a particular system configuration and an operating strategy that defines how those components work together, would behave in a given setting over a long period of time.
- **Home can simulate variety of micropower system configuration**
- **1-hour time step** to model the behavior of the sources involving intermittent renewable power sources with **acceptable accuracy**

Dispatch Strategies and NPC

- A system with battery bank and generator requires dispatch strategy
- H Dispatch strategy: A set of rules governing how the system charges the battery bank
 - (LF) Load-following dispatch: Renewable power sources charge the battery but the generators do not
 - (CC) Cycle-charging dispatch: Whenever the generators operate, they produce more power than required to serve the load with surplus electricity going to charge the battery bank.
- Hife Cycle Cost of the system is represented by total net present cost (NPC):
 - NPC includes all costs and revenues that occur within the project lifetime, with future cash flows discounted to the present.
 - Any revenue from the sale of power to the grid reduces the total NPC
 - △NPC is the negative of NPV (Net Present Value)

NPV & "Time value of money"

- Compare money today with money in the future
- **Relationship between \$1 today and \$1 tomorrow**
- \$1 (time t) → \$? (time t+1)
- Case: Invest in a piece of land that costs \$85,000 with certainty that the next year the land will be worth \$91,000 [a sure \$6,000 gain], given that the guaranteed interest in the bank is 10%?
 - Future Value (If invested in the bank) perspective

$$FV = C_0 \times (1+r)$$

 $85,000 \times (1+0.1) = 93,500$

future value **\$93**, 500 > **\$91**, 000

Present Value (PV) perspective

$$PV \times (1+0.1) = \$91,000$$
 $PV = \frac{\$91,000}{1.1} = \$82,727.27$

present value \$2,727.27 < \$35,000

 $PV = \frac{C_1}{1+r}$, where C_1 is cash flow at date 1

Do not to buy the land.

18

NPV (Net Present Value)

K Net Present Value(NPV):

Present value of future cash flows minus the present value of the cost

$$NPV = PV - Cost.$$
$$NPV = \frac{\$91,000}{1.1} - \$85,000 = -\$2,273$$

△ Formula:

$$NPV = -C_{0} + \frac{C_{1}}{1+r} + \frac{C_{2}}{(1+r)^{2}} + \dots + \frac{C_{T}}{(1+r)^{T}}$$
$$NPV = -C_{0} + \sum_{i=1}^{T} \frac{C_{i}}{(1+r)^{i}}.$$

NPV Example

A company is determining whether they should invest in a new project. The company will expect to invest \$500,000 for the development of their new product. The company estimates that the first year cash flow will be \$200,000, the second year cash flow will be \$300,000, and the third year cash flow to be \$200,000. The expected return of 10% is used as the discount rate.

Year	Cash Flow	Present V	alue		Yaar 1	Yaar2	Ymr3
0	-\$500,000	-\$500,00	0		I		
1	\$200,000	\$181,81	8.18		· ' 💽		
2	\$300,000	\$247,93	3.88				
3	\$200,000	\$150,26	2.96				
			Year	Interest	Cash Flow	PV	NPV
			0	0.1	-500000	-500000.00	-500000.00
Net Pres	ent Value = \$80,015.02		1	0.1	200000	181818 18	-318181.82

Year

0

3

4

5

6

8

9

10

Interest

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

-500000

100000

100000

100000

100000

100000

100000

100000

100000

100000

100000

Cash Flow

200000

42409.76

38554.33

P٧

247022.00

114456.71

-70247.93

80015 03

216617.72

340801.98

453696.77

556328.39

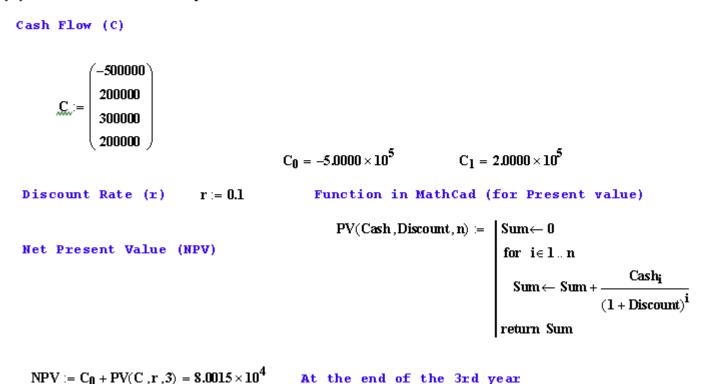
649629.87

734449.39

811558.05

20

NPV = -\$500,000 +	\$200,000	\$300,000	\$200,000
NFV = -9500,000 +	1.10	1.10^{2}	1.10^{3}


$NPV = -C_0 + \nabla$	$\neg T$	C_i
$NPV = -C_0 + \sum$	- <i>i</i> =1 ($(1+r)^{i}$

NPV in MathCad

NPV Example.xmcd Charles Kim 2013

A company is determining whether they should invest in a new project. The company will expect to invest \$500,000 for the development of their new product. The company estimates that the first year cash flow will be \$200,000, the second year cash flow will be \$300,000, and the third year cash flow to be \$200,000. The expected return of 10% is used as the discount rate. (Q) Calculate NPV at each year

MathCad

Generation of Graphs

$$\begin{array}{c} C_{0} = -50000 \\ m_{2} = 3.9 \\ \hline \\ C_{m} = 200000 \\ mpvl_{0} = -C_{0} \\ k = 1..9 \\ mpvl_{k} := C_{0} + PV(C, r, k) \\ mpvl_{k} := C_{0}$$

Optimization

Best possible system configuration that satisfies the user-specified constraints at the lowest total net present cost.

- Becide on the mix of components that the system should contain, the size or quantity of each component, and the dispatch strategy (LF or CC) the system should use.
- Ranks the feasible ones according to total net present cost
- Presents the feasible one with the lowest total net present cost as the optimal system configuration.

Optimization Example

Configuration and 140 (5x1x7x4=140) search spaces

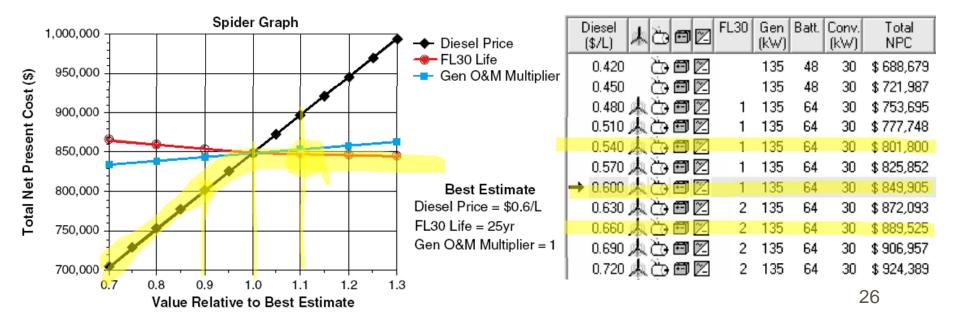
	FL30	Gen	Batteries	Converter
	(Quantity)	(kW)	(Quantity)	(kW)
1	0	135.00	0	0.00
2	1		16	30.00
3	2		32	60.00
4	3		48	120.00
5	4		64	
6			96	
7			128	
8				

Overall Optimization results

*`` = =	FL30	Gen (kW)	Batt.	Conv. (kW)	Initial Capital	Total NPC	COE (\$/kWh)	Diesel (L)	Gen (hrs)
* 13 🖻 🖾	1	135	64	30	\$ 216,500	\$ 849,905	0.273	75,107	4,528
本心回図	2	135	64	30	\$ 346,500	\$ 854,660	0.274	54,434	3,350
本心回図	1	135	48	30	\$ 200,500	\$ 855,733	0.275	78,061	4,910
****	2	135	48	30	\$ 330,500	\$ 856,335	0.275	57,654	3,685

Categorized optimization result

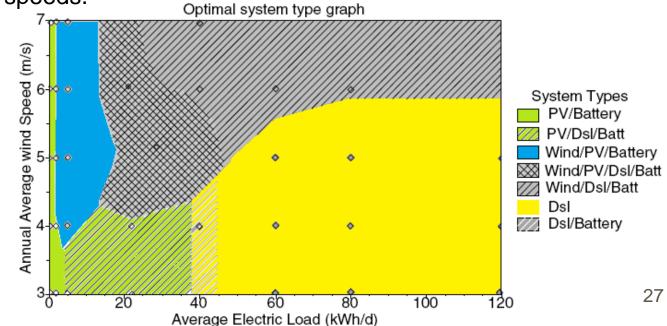
*082	FL30	Gen (kW)	Batt.	Conv. (kW)	Initial Capital	Total NPC	COE (\$/kWh)	Diesel (L)	Gen (hrs)
*************************************	1	135	64	30	\$ 216,500	\$ 849,905	0.273	75,107	4,528
🗌 🖸 🖾		135	64	30	\$ 86,500	\$ 885,175	0.284	101,290	5,528
ත්		135			\$0	\$ 996,273	0.320	132,357	8,760
ある	1	135			\$130,000	\$ 1,130,637	0.363	127,679	8,740


Sensitivity Analysis

- Hoptimization: best configuration under a particular set of input assumptions
- Sensitivity Analysis: Multiple optimizations each using a different set of input assumptions
- "How sensitive the outputs are to changes in the inputs" results in various tabular and graphic formats
- **#** User enters a range of values for a single input variable:
 - Grid power price
 - ☐ Fuel price,
 - Interest rate
 - ☐ Lifetime of PV array
 - Solar Radiation
 - ☑ Wind Speed

s	ensitivity Values				16 P	timal System Type	Ň	System Types Gen1
/		4.010 8.000 12.000 16.000	rage Image Image Clear Clear	OK	Global Solar (KWh/m²/d)	40	60	PV/Gen1 Fixed Wind Speed = 3.26 m/s Diesel Price = \$0.4/L
					Pri	imary Load 1 (kWh/d)		05

Why Sensitivity Analysis? Uncertainty!


- Here with the second second
- Biesel Generator Wind Configuration: Uncertainty in diesel fuel price with \$0.6 per liter in the planning stage and 30 year generator lifetime
- **#** Example: Spider Graph

Tabular Format

Sensitivity Analysis on Hourly Data Sets

- Sensitivity analysis on hourly data sets such as primary electric load, solar/wind resource
- 8760 values that have a certain average value with scaling variables
- **Example:** Graphical Illustration
 - Hourly primary load data with an annual average of 22 kWh/day with average wind speed of 4 m/s
 - Primary load scaling variables of 20, 40, ---, 120kWh/day & 3, 4, ---, 7 m/s wind speeds.

Physical Modeling - Loads

K Load: a demand for electric or thermal energy

3 types of loads

Primary load: electric demand that must be served according to a particular schedule

When a customer switches on, the system must supply electricity

⊠kW for each hour of the load

⊠Lights, radio, TV, appliances, computers,

Deferrable load: electric demand that can be served at any time within a certain time span

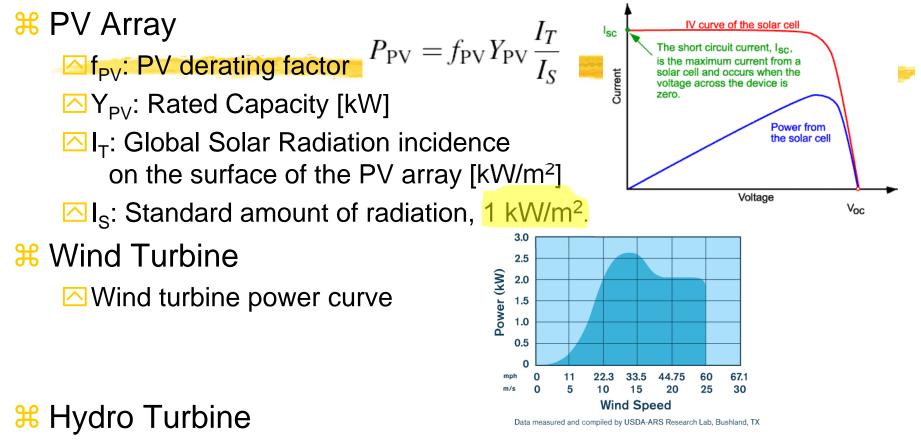
⊠Tank – drain concept

⊠ Water pumps, ice makers, battery-charging station

Thermal load: demand for heat

Supply from boiler or waste heat recovered from a generator

Resistive heating using excess electricity


Physical Modeling - Resources

- Solar Resources: average global solar radiation on horizontal surface (kWh/m² or kWh/m²-day) or monthly average clearness index (atmosphere vs. earth surface). Inputs – solar radiation values and the latitude and the longitude. Output – 8760 hour data set
- **Wind Resources**: Hourly or 12 monthly average wind speeds. Anemometer height. Wind turbine hub height. Elevation of the site.
- **Hydro Resources**: Run-of-river hydro turbine. Hourly (or monthly average) stream flow data.
- **Biomass Resources**: wood waste, agricultural residue, animal waste, energy crops. Liquid or gaseous fuel.
- **Fuel**: density, lower heating value, carbon content, sulfur content. <u>Price</u> and <u>consumption limits</u>

Physical Modeling - Components

- HOMER models 10 types of part that generates, delivers, converts, or stores energy
 - △3 intermittent renewable resources:
 - ≥PV modules (dc)
 - \boxtimes wind turbines (dc or ac)
 - ⊠run-of-river hydro turbines (dc or ac)
 - 3 dispatchable energy sources: [control them as needed]
 - Generators
 - \boxtimes the grid
 - ⊠boilers
 - △2 energy converters:
 - \boxtimes Converters (dc $\leftarrow \rightarrow$ ac)
 - \boxtimes Electrolyzers (ac,dc \rightarrow electrolysis \rightarrow Hydrogen)
 - △ 2 types of energy storage:
 - ⊠ batteries (dc)
 - ⊠hydrogen storage tanks

Components- PV, Wind, and Hydro

Power Output Eqn = Turbine efficiency, density of water, gravitational acceleration, net head, flow rate through the turbine

 $P_{\rm hyd} = \eta_{\rm hyd} \rho_{\rm water} g h_{\rm net} \dot{Q}_{\rm turbine}$

Components - Generator

Generators

- Principal properties: max and min electrical power output, expected lifetime, type of fuel, fuel curve
- Fuel curve: quantity of fuel consumed to produce certain amount of electrical power. Straight line is assumed.
- ☐ Fuel Consumption (F) [L/h],
 - [m³/h], or [kg/h]:
 - ☑ F_o fuel curve intercept coefficient [L/h-kW];
 - $\mathbb{E}F_1$ fuel curve slope [L/h-kW];
 - \mathbb{X} Y_{gen} rated capacity [kW];
 - ≥ P_{gen} electrical output [kW]

$$F = F_0 Y_{\text{gen}} + F_1 P_{\text{gen}}$$

Components - Generator

- **Generator costs: initial capital cost, replacement cost, and annual** O&M cost per operating hour (not including fuel cost)
- **Fixed cost:** cost per hour of simply running the generator without H producing any electricity

$$c_{\text{gen,fixed}} = c_{\text{om,gen}} + \frac{C_{\text{rep,gen}}}{R_{\text{gen}}} + F_0 Y_{\text{gen}} c_{\text{fuel,eff}}$$

 $c_{\rm om,gen}$ is the O&M cost per hour,

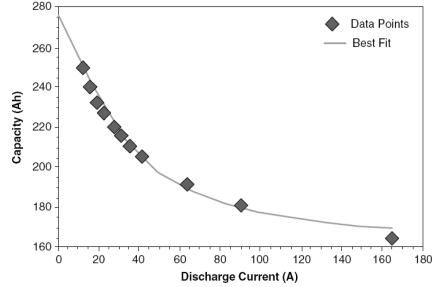
 $C_{\rm rep,gen}$ the replacement cost

 $R_{\rm gen}$ the generator lifetime in hours.

 F_0 the fuel curve intercept coefficient in quantity of fuel per hour per kilowatt.

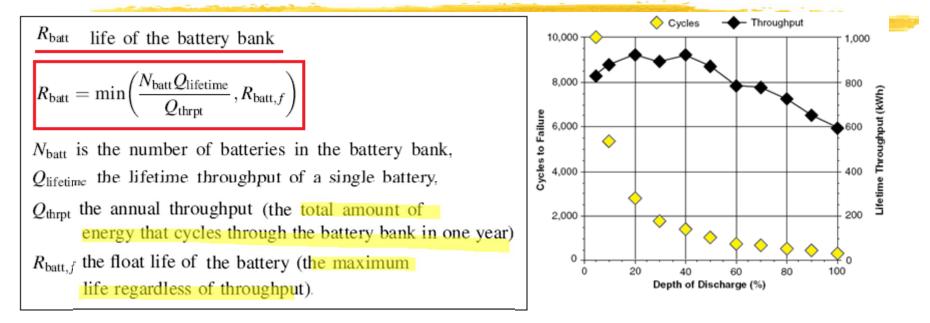
 Y_{gen} the capacity of the generator (kW).

 $c_{\text{fuel,eff}}$ the effective price of fuel in dollars per quantity of fuel.


Marginal cost: additional cost per kWh of producing electricity H <u>from the generator</u> $c_{\text{gen,mar}} = F_1 c_{\text{fuel,eff}}$

 F_1 is the fuel curve slope in quantity of fuel per hour per kilowatthour 33

Components – Battery Bank


Battery Bank

- Principal properties:
 - ⊠ nominal voltage
 - **capacity curve:** discharge capacity in AH vs. discharge current in A
 - **⊠ lifetime curve**: number of discharge-charge cycles vs. cycle depth
 - minimum state of charge: State of charge below which must not be discharges to avoid permanent damage
 - round-trip efficiency: percentage of energy going in to that can be drawn back out
- Example capacity curve for a deep-cycle US-250 battery (Left)

Components - Battery

∺ Battery Lifetime Curve and Example for US-250

Battery Fixed cost = \$0

- **Battery Marginal Cost** = Battery Wear Cost + Battery Energy Cost
 - Battery Wear Cost: the cost per kWh of cycling energy through the battery bank
 - Battery energy cost: the average cost of the energy stored in the battery bank

Components - Battery

- Battery energy cost each hour: dividing the total year-to-date cost of charging the battery bank by the total year-to-date amount of energy put into the battery bank
 - Load-following dispatch strategy: since charged only by surplus electricity, charging cost of battery is always zero
 - Cycle-charging strategy: charging cost is not zero.
- **Battery wear cost**:

$$c_{\rm bw} = rac{C_{\rm rep, batt}}{N_{\rm batt} Q_{\rm lifetime} \sqrt{\eta_{\rm rt}}}$$

 $C_{\text{rep,batt}}$ is the replacement cost of the battery bank (dollars)

 N_{batt} is the num ber of batteries in the battery bank,

 Q_{lifetime} is the lifetime throughput of a single battery (kWh) η_{rt} is the round-trip efficiency.

Components - Grid

Grid and Grid Power Cost

☐ Grid power price [\$/kWh]: charges for energy purchase from grid

Demand rate [\$/kW/month]: peak grid demand

- Het Metering: a billing arrangement whereby the utility charges the customer based on the net grid purchases (purchases minus sales) over the billing period.
 - Purchase > sales: consumer pays the utility an amount equal to the net grid purchases times the grid power cost.
 - sales > purchases: the utility pays the consumer an amount equal to the net grid sales (sales minus purchases) times the sellback rate, which is typically less than the grid power price, and often zero.
- ₭ Grid fixed cost: \$0
- Grid marginal cost: current grid power price plus any cost resulting from emissions penalties.

Sellback rate [\$/kWh]: price the utility pays for the power sold to grid

Emission Trading ("Cap and Trade")

- Harket based approach for controlling pollution by providing economic incentives for achieving reductions in the emissions of pollutants.
- **Carbon credits for emission**
- Firms that need to increase their emissions must buy permits from those who require fewer permits
- Buyer is paying a charge for pollution while seller is rewarded for reduction of it.
- Contract Responsive to Respons

Carbon Tax

- A carbon tax is a direct tax on the carbon content of fossil fuels (coal, oil and natural gas).
- A carbon tax is the most economically efficient means to convey crucial price signals that spur carbon-reducing investment.
- Carbon taxes should be phased in so businesses and households have time to adapt.
- A carbon tax can be structured to soften the impacts of added costs by distributing tax revenues to households ("dividends") or reducing other taxes ("tax-shifting").
- Support for a carbon tax is growing steadily among public officials; economists; scientists; policy experts; business, religious, and environmental leaders; and ordinary citizens.

Carbon Tax Implementation – US and Canada

California

In 2008, 9 counties around the San Francisco Bay area --- 4.4 cents per ton of CO2

Maryland

In 2001, \$5 per ton of CO2 from any stationary source emitting more than a million tons of CO2 during a calendar year

Quebec

Solution States Sta

British Columbia

Signature State Stat

Alberta

\$15 per ton of CO2 for companies emitting more than 100,000 tons annually.

Carbon Tax Implementation - Korea

- In February 2010, a deputy finance minister confirmed that South Korea is considering a carbon tax to help reduce emissions 4% from 2005 levels by 2020.
- His would be in conjunction with a cap-and-trade program to be implemented later this year.
- With a tax rate of 31,828 won (25 Euros) per ton of CO2, the South Korean government would collect 9.1 trillion won (\$7.9 billion) in tax revenue based on 2007 emissions.
- Income from the carbon tax would be used to reduce corporate and income taxes. On July 22, 2010 Chairman of the Korea Chamber of Commerce and Industry asked for the South Korean government to delay the implementation of the carbon tax: "If the government applies much stricter guidelines over carbon emissions, then companies might be burdened."

Example of Grid Rate for Medium General Service

¥ Year 2007 example

Hedium General Service:

Monthly Use: > 3500kWh

Summer Peak: <300kW

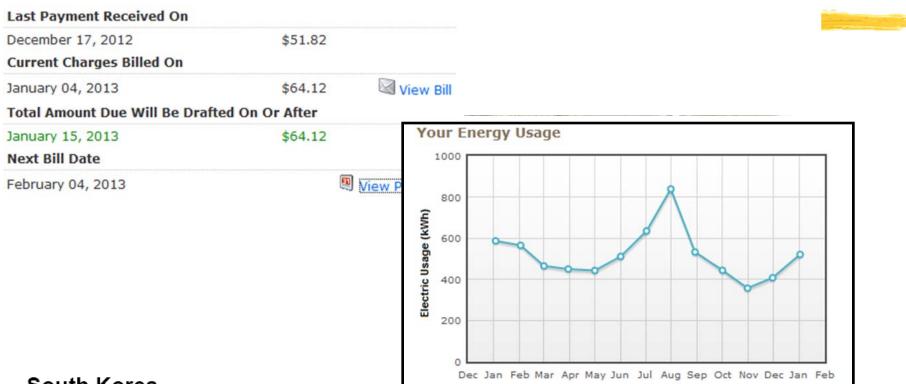
₭ Rate:

Customer charge: \$25.42/month

Energy Charge: \$0.062533/kWh [summer], \$0.069533/kWh [winter]

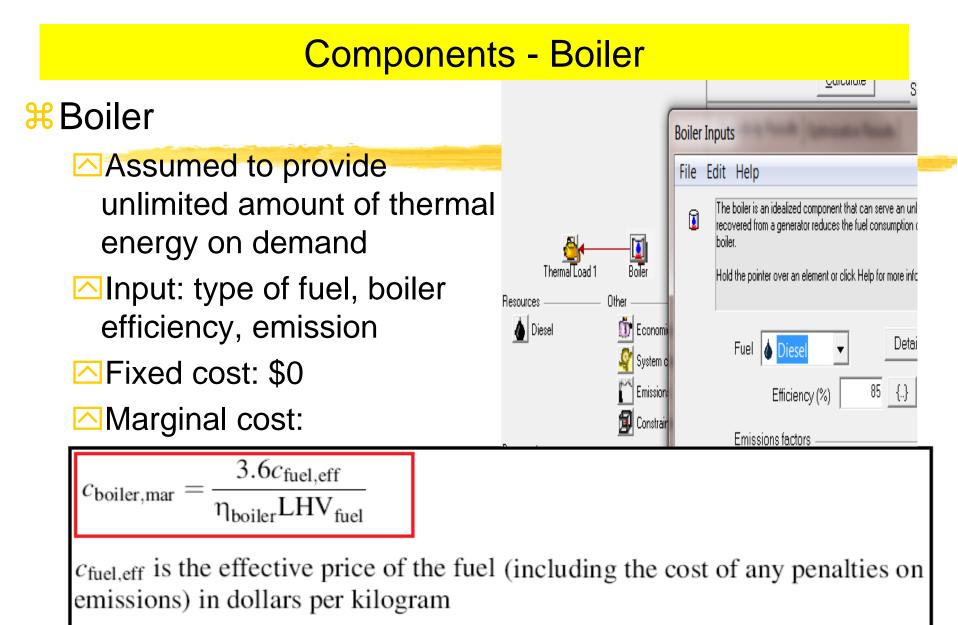
Demand charge: \$22.69535/kW [summer], \$14.7419/kW [winter]

A Restaurant (a summer month: Jun - Sep) 24000 kWh, 150kW demand


Customer charge: \$25.42

Energy charge: \$1500.79

⊡ Demand charge: \$3404.02


Example of a residential customer

Welcome to Manage Your Account

South Korea

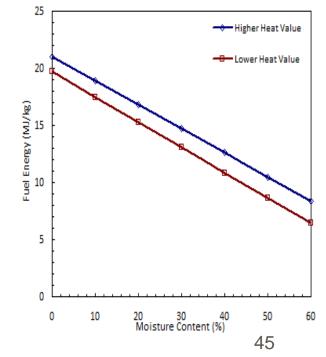
Energy Efficiency/CO2' Indicators	Units	1980	1990	2000	2007
Residential, service and agriculture sectors Average electricity consumption of households per capita Average electricity consumption per household Average electricity consumption of electrified households Households consumption for electrical appliances and lighting	kWh/cap kWh/hh kWh/hh kWh/hh	139 728 728 0	414 1716 1716 1541	789 2412 2412 1980	1130 3822 3822 n.a. 4

 η_{boiler} is the boiler efficiency.

LHV_{fuel} is the lower heating value of the fuel in MJ/kg

Heating Value of Fuel

Higher Heating Value (HHV)


The Higher Heating Value (HHV) is the total amount of heat in a sample of fuel including the energy in the water vapor that is created during the combustion process.

K Lower Heating Value (LHV)

The Lower Heating Value (LHV) is the amount of heat in a sample of fuel minus the energy in the combustion water vapor. The Lower Heating Value is always less than the Higher Heating Value for a fuel.

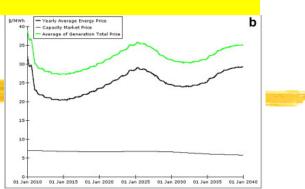
Fuel Type	Higher Heat Value (kJ/kg)	Lower Heat Value (kJ/kg)
Wood, Dry	21	19.7
Grass, Dry	18.5	17.4
Dairy Manure, Dry	20.5	19.3
Coal, Bituminous	28	26
Natural Gas	42.5	38.1
Fuel Oil	45.9	43
Gasoline	47.9	43.8
Ethanol	29.8	26.9

Typical Higher and Lower Heat Values for Fuels

Components – Converter & Fuel Cell

Converter

- Inversion and Rectification
- Size: max amount of power it delivers
- Synchronization ability: parallel run with grid
- Efficiency
- Cost: capital, replacement, o&m, lifetime
- **#** Electrolyzer:
 - Size: max electrical input
 - Min load ratio: the minimum power input at which it can operate, expressed as a percentage of its maximum power input.
 - Cost: capital, replacement, o&m, lifetime
- Hydrogen Tank
 - Size: mass of hydrogen it can contain
 - Cost: capital, replacement, o&m, lifetime



Operating Reserve

Operating Reserve

Safety margin for reliable electricity supply despite variability in load and renewable power supply

- Required amount of reserve: <u>Fraction of load at an hour +</u> <u>fraction of the annual peak primary load + fraction of PV power</u> <u>output at that hour + fraction of the wind power output at that</u> <u>hour.</u>
- **Example** for a wind-diesel system
 - ☑User defines operating reserve as 10% of the hourly load + 50% of the wind power output

 \mathbb{Z} Load = 140kW; Wind power output = 80kW

⊠Required Operating Reserve = 140kW*0.1 + 80kW*0.5=54 kW

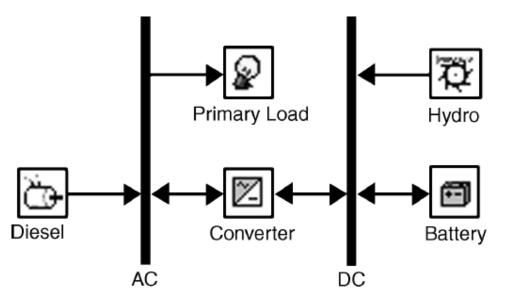
⊠ Diesel Generator should provide 60 kW (140 – 80) + 54 = 114 kW

⊠So, the capacity of the diesel gen must be at least 114 kW

System Dispatch

- **B** Dispatachable and non-dispatchable power sources
- Bispatchable source: provides operating capacity in an amount equal to the maximum amount of power it could produce at a moment's notice.
 - 🔼 Generator
 - ☑ In operation: dispatchable opr capacity = rated capacity
 - \boxtimes non-operation: dispatchable opr capacity = 0
 - ☐ Grid: dispatchable opr capacity = max grid demand
 - Battery: dispatachable opr capacity = current max discharge power
- Non-dispatchable source
 - Operating capacity (PV, Wind, or Hydro) = the amount the source is currently producing (Not the max amount it can produce)
- NOTE: If a system is ever unable to supply the required amount of load plus operating reserve, HOMER records the shortfall as "capacity shortage".
 - HOMER calculates the total amount of such shortages over the year and divides the total annual capacity shortage by the total annual electric load.

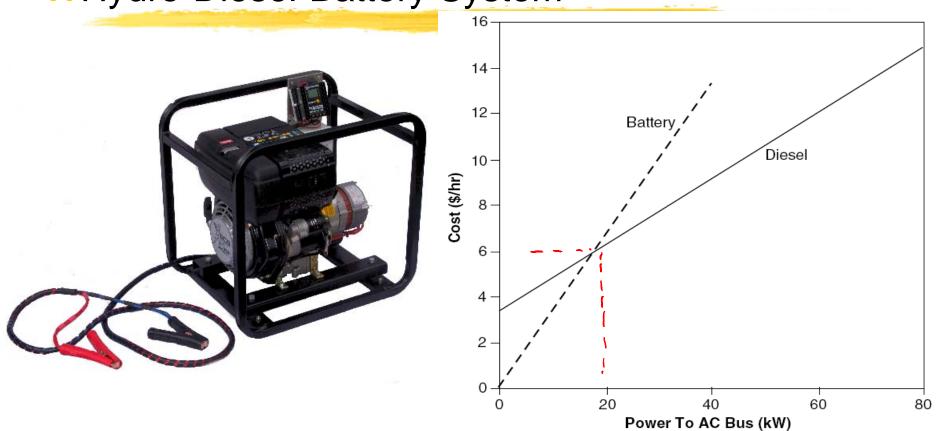
Dispatch Strategy for a system with Gen and Battery


Bispatch Strategy

- Whether and how the generator should charge the battery bank?
- There is no deterministic way to calculate the value of charging the battery bank – the value of charging in one hour depends on what happens in future hours. [enter Wind power which can provide enough power the next hour – then the diesel power into battery would be wasted]
- △ HOMER provides 2 simple strategies and lets user model them both to see which is better in any particular situation.
 - ☑ Load-following: a generator produces only enough power to serve the load, and does not charge the battery bank.
 - Cycle-Charging: whenever a generator operates, it runs at its maximum rated capacity and charges the battery bank with the excess
 - ☑ It was found that over a wide range of conditions, the better of these two simple strategies is virtually as cost-effective as the ideal predictive strategy.

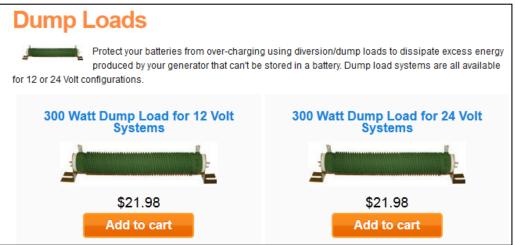
Set-point state charge": in the cycle-charging strategy, generator charges until the battery reaches the set-point state of charge.

Control of Dispatchable System Components


- **#** Fundamental principle: cost minimization fixed cost and marginal cost
- **Example: Hydro-Diesel-Battery System**

- Bispatachable sources: diesel generator [80kW] and battery [40kW]
- H net load is negative: excess power **charges battery**
- H net load is positive: **operate diesel** OR **discharge battery**

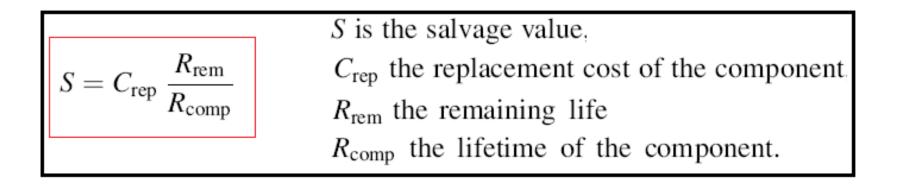
Dispatch Control Example


Hydro-Diesel-Battery System

Het load < 20kW: Discharge the battery</p>
Het load > 20kW: Operate the diesel generator

Load Priority

- **#** Decisions on allocating electricity
- Presence of ac and dc buses
- **#**Electricity produced on one bus will serve
 - First, primary load on the same bus
 - △Then, primary load on the opposite bus
 - △Then, deferrable load on the same bus
 - △Then, charge battery bank
 - ☐Then, sells to grid
 - Then, electrolyzer
 - Then, dump load



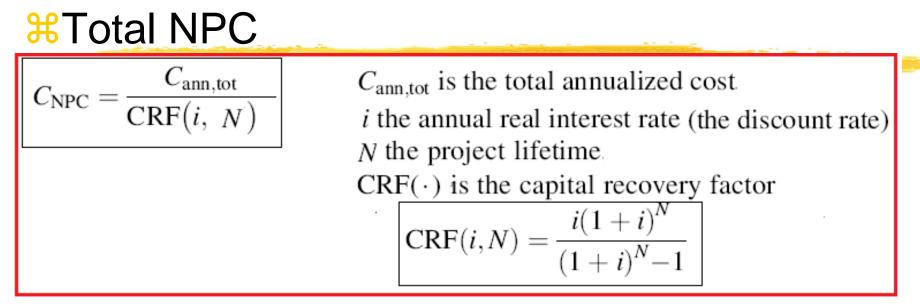
Economic Modeling

- **Conventional sources: low capital and high operating costs**
- **#** Renewable sources: high initial capital and low operating costs
- Life-cycle costs= capital + operating costs
- ∺ HOMER uses NPC for life-cycle cost

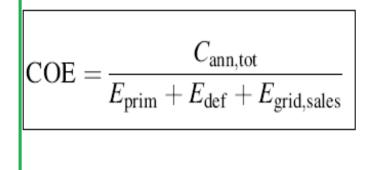
NPC is the opposite of NPV (Net present value)

Here NPC includes: initial construction, component replacements, maintenance, fuel, cost of buying grid, penalties, and revenues (selling power to grid + <u>salvage value</u> at the end of the project lifetime)

Real Cost


All price escalates at the same rate over the lifetime

Inflation can be factored out of analysis by using the real (inflation-adjusted) interest rate (rather than nominal interest rate) when discounting the future cash flows to the present


Real interest rate = nominal interest rate inflation rate

 \Re Real cost \rightarrow in terms of constant dollars

NPC and COE

Hevelized Cost of Energy (COE): average cost/kWh

 $C_{\text{ann,tot}}$ is the total annualized cost,

E_{prim} total amounts of primary load

 E_{def} total amounts of deferrable load

 $E_{\text{grid},\text{sales}}$ is the amount of energy sold to the grid

What HOMER includes in NPC

Knowledgebase: Economics

10303 - Total net present cost in HOMER

Posted by on 21 December 2010 11:45 AM

What is meant by life cycle cost and how it is determined?

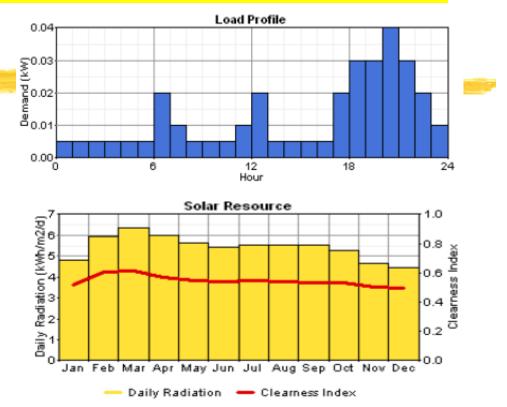
HOMER uses the total net present cost (NPC) to represent the life-cycle cost of a system. The total NPC condenses all the costs and revenues that occur within the project lifetime into a single lump sum in year-zero dollars, with future cash flows discounted back to year zero using the discount rate. Costs may include capital costs, replacement costs, operating and maintenance costs, fuel costs, the cost of buying electricity from the grid, and miscellaneous costs such as penalties resulting from pollutant emissions. Revenues may include income from selling power to the grid, plus any salvage value that occurs at the end of the project lifetime.

With the NPC, costs are positive and revenues are negative. This is the opposite of the net present value (NPV). As a result, the NPC differs from NPV only in sign.

To see a detailed breakdown of the how HOMER calculates the total NPC for any system in the Optimization Results list, double click on that system to see the Simulation Results window, switch to the Cash Flow tab, and click the Details button in the top right corner. HOMER will display a spreadsheet showing the cash flows that occur in every year of the project lifetime, broken down by component and type. If you choose to display the discounted cash flows, the total net present cost will appear in the bottom right cell.

Example Case – Micro Grid in Sri Lanka

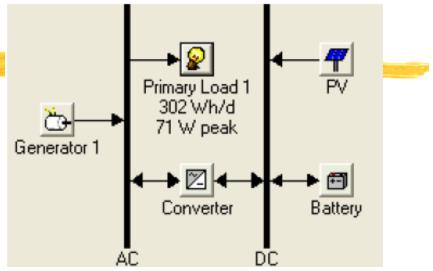
₭ Load profile:

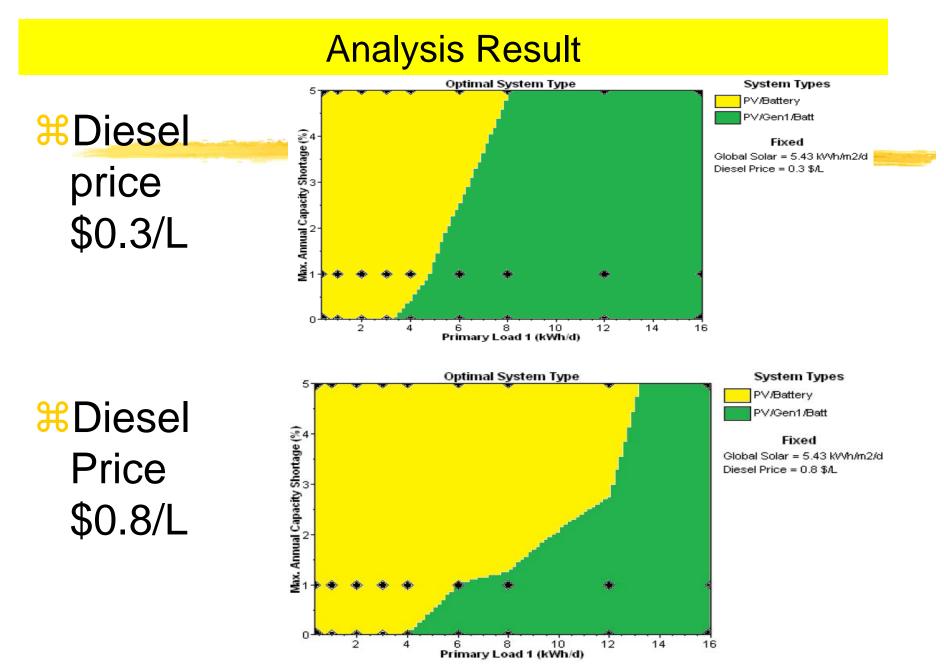

- base load of 5W, small peaks of 20 W, peak load of 40W; total daily average load = 350 Wh
- Sensitivity analysis range: [0.3kW/h, 16kWh/d]

Solar Resource

- 7.30' Latitude & 81.30 longitude
- NASA Surface Meteorology and Solar Energy Web: average solar radiation = 5.43 kWh/m²/d.

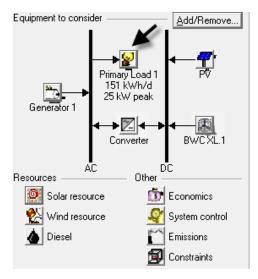
🔀 Diesel Fuel Price


- ⊠ \$0.4/L \$0.7/L
- Sensitivity analysis range: [\$0.3, 0.8] with increment of \$0.1/L

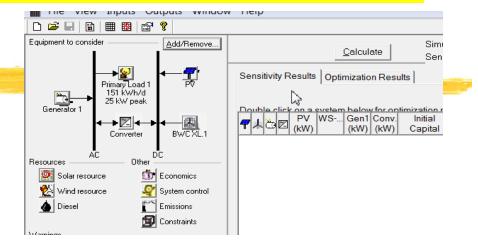

- Economics:
 - Real annual interest rate at 6%
- Reliability Constraints
 - 0% annual capacity shortage Sensitivity Analysis range: [0.5 – 5]%

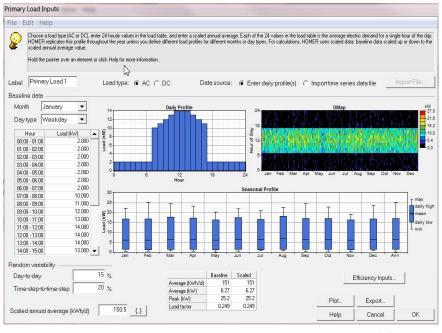
Example Case – Micro Grid in Sri Lanka

- ₩ PV: de-rating factor at 90%
- Hattery: T-105 or L-16
- Converters: efficiency at 90% for inversion and 85% for rectification
- Generator: not allowed to operate at less than 30% capacity

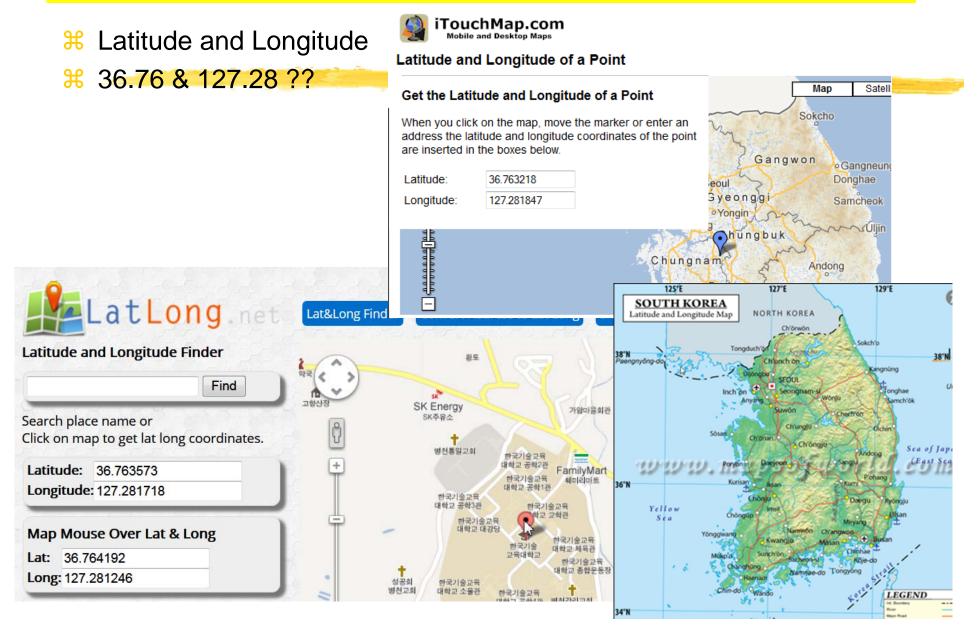


Component	Size	Capital Cost (\$)	Replacement Cost	O&M Cost (\$)	Lifetime
PV Panels	0.05 – 5.0 kW	\$7,500/kW	\$7,500/kW	0.00	20 years
Trojan T-105 Batteries	225 Ah / 6 volt (bank size: 1 – 54 batteries)	\$75/battery	\$75/battery	\$2.00/year	845 kWh of throughput per battery
Converter	0.1 – 4.0 kW	\$1,000/kW	\$1,000/kW	\$100/year	15 years
Generator	4.25 kW	\$2,550	\$2,550	\$0.15/hour	5000 hours



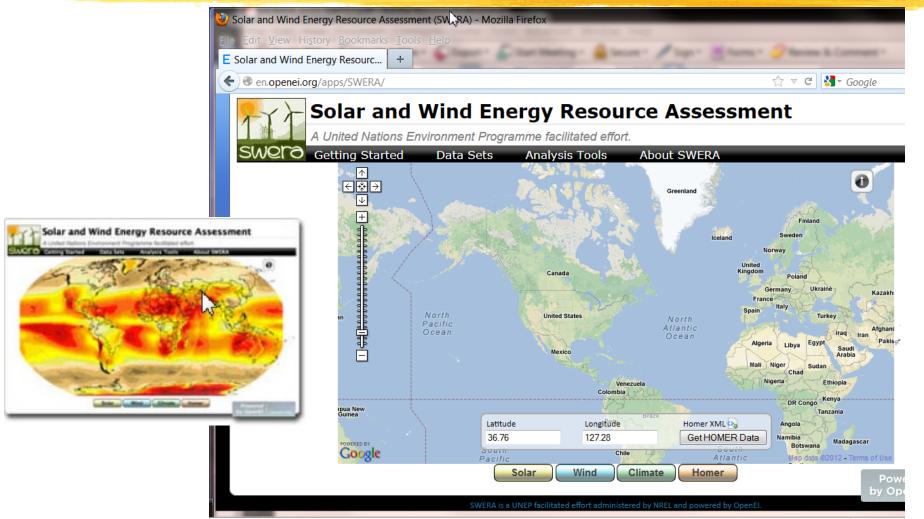

HOMER: Getting Started – with existing file

- # 1. www.mwftr.com/kt2013.html
- 3. Open the Example Project File: ExampleProject.hmr
- ₭ 4. Click the Primary Load



5. Exit out of HOMER – We have things to do

Find the Site [Location]


LAT and LONG Conversion						
Convert Latitude	/ Longitude in Degrees +					
← 🕲 transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html						
n 🔊 Most Visited	Getting Started New Tab					
Audio Divi	Degrees Minutes Seconds to Decimal Degrees Enter Degrees Minutes Seconds latitude:	32	7	22.799		
	Enter Degrees Minutes Seconds longitude:	125	12	56.64		
	Convert to Decimal Clea	r Values				
	Results: Latitude: 32.123 Longitud	le: 125.	21573	3		

Decimal Degrees to Degrees Minutes Seconds

Enter Decimal Latitude:	32.1230
Enter Decimal Longitude:	125.1824
Convert to Degrees Minutes Secon	Clear Values
Results: Latitude: 32° 7' 22.7994" Longit	ude: 125° 10' 56.64"

Solar and Wind Data

- http://en.openei.org/apps/SWERA/
- 8 Click "Homer", input latitude and longitude, then click "Get Homer Data"

Solar Radiation and Wind Speed Data

K Monthly Solar Radiation [kW/m²-day] and Wind Speed [m/s]

-<data>

- -<monthly>
 - -<monthly_average_radiation>
 - <float> 2.82 </float> Jan <float> 3.69 </float> Feb <float> 4.49 </float> Mar
 - <float> 5.40 </float> Apr
 - <float> 5.57 </float> May
 - <float> 4.99 </float> Jun <float> 4.17 </float> Jul
 - <float> 4.19 </float> Aug
 - <float> 3.95 </float> Sep
 - <float> 3.55 </float> Oct
 - <float> 2.76 </float> Nov
 - <float> 2.55 </float> Dec
 - </monthly_average_radiation>
 - </monthly>
- </data>

-<scaled_annual_average>

- -<values>
 - <float> 4.01 </float> Annual </values>

= - <monthly>

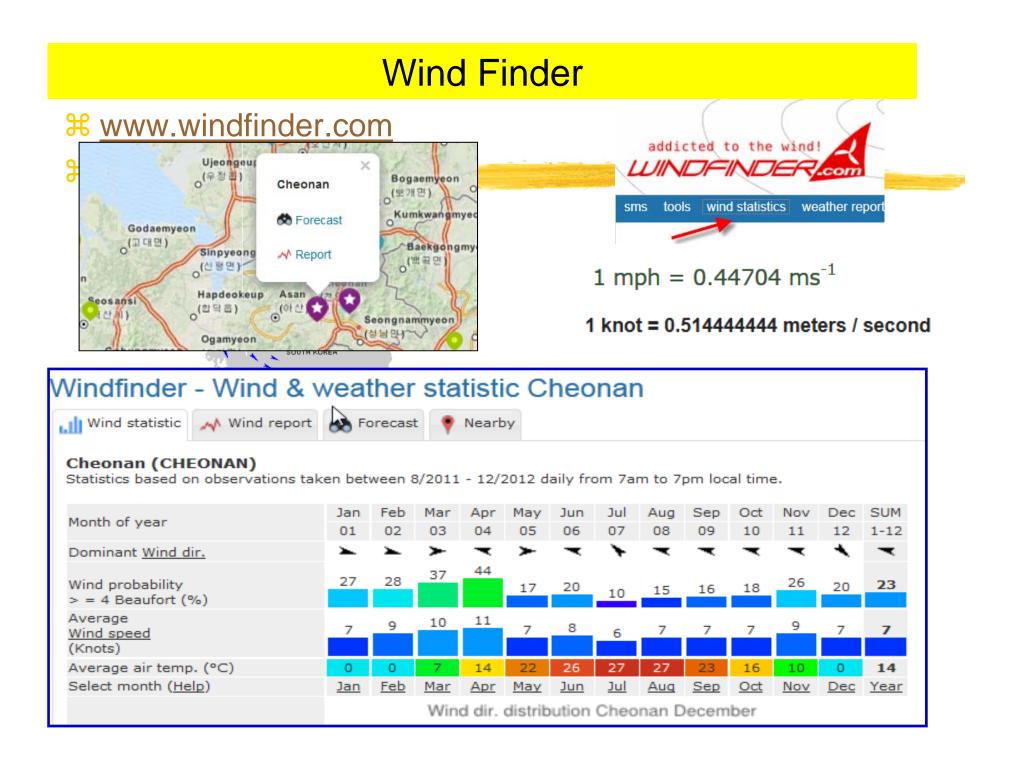
<data>

- -<monthly average wind speed> \leq float \geq 3.46 \leq /float \geq <float> 3.66 </float><float> 3.81 </float><float> 3.91 </float><float> 3.43 </float><float> 3.03 </float><float> 3.02 </float><float> 2.88 </float> <float> 2.68 </float><float> 2.73 </float><float> 3.25 </float> \leq float \geq 3.34 \leq /float \geq </monthly average wind speed> -<anemometer height> </monthly> -<values> </data> <float> 50 </float> <scaled annual average> </values> -<values> </anemometer height>
 - <float> 3.27 </float>

Import XLM File from SWERA

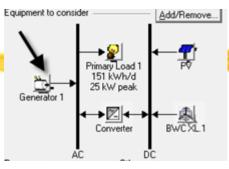
△Lat & Longs → Get Homer
 △From the XLM data screen
 ×CTRL+S (save to a xlm file)

₭Now with HOMER


☐ File>"Import XLM"

Wind Resources are automatically filled

Solar Resources are automatically filled


 \boxtimes Lat N, Long E \rightarrow marking error

 \boxtimes But kWh/m2 is kept the same.

HOMER: Open the file again

Click the generator

∺ 25 kW \$10,000

₭ Minimum running at 30%

to	stallation costs, and that the O&M c	ost is expressed in dollars per operat or the optimal system, HOMER will c		is table. Note that the capital cost includes ary ratio if heat will be recovered from this generator les to Consider table.
Cost	Fuel Schedule Emission	ns		
Costs	3		 Sizes to consider — 	Cost Curve
,	e (kW) Capital (\$) Replacement		Size (kW)	16 Cost Curve
	25.000 10000 9	000 0.500	0.000	a ¹²
			30.000	Cost (000 \$)
			35.000	Cost
_	{}	{} {}		
Prope	erties			0 10 20 30 40
De	escription Generator 1	Type (AC		Size (kW)
At	bbreviation Gen1	⊖ DC		- Capital - Replacement
Lif	fetime (operating hours)	15000 {}		
M	inimum load ratio (%)	30 {}		

Equipment

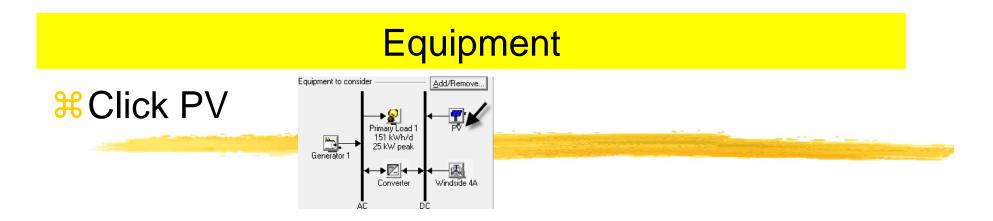
Equipment to consider

Generator 1

Primary Load 1

151 kWh/d

25 kW peak


→<mark>⊠</mark>← Converter Add Remove...

Windside 4A

Click Wind Turbine

From the drop down list click through the wind turbines and look at the power curve. Try to find a Wind Turbine that would best maximize Average Wind Speed (m/s) :3.27

	searches for the optimal system, HOMER considers each quantity in the S Hold the pointer over an element or click Help for more information.	
	Turbine type Windside 4A Uetails Turbine properties Abbreviation: WS-4A (used for column headings) Rated power: 1.2 kW DC Manufacturer: Website: www.windside.com	Delete 1.2 Power Curve 1.0 0.8 0.8 0.4 0.4 0.2
\rightarrow	Costs Quantity Capital (\$) Replacement (\$) D&M (\$/yt) 1 30000 25000 500 {} {} {} {}	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	tor tor tor Other	3 20 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0 Quantity Capital Replacement OK

History Contractions Contractions Herein Contractions History Contractions

	more information.
Costs	Sizes to consider Cost Curve
Size (kW) Capital (\$) Replacement (\$) 0&M (\$/yr 10.000 35000 25000 0) Size (kW) 0.000 80
	10.000 15.000 20.000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.00000 15.0000 15.0000 15.0000 15.0000 15.00000000 15.00000 15.0
<u>{.}</u> {.}	
roperties Output current CAC (DC	
Lifetime (years) 20	Advanced
Derating factor (%) 90 {}	Tracking system No Tracking
Slope (degrees) 45 {}	Consider effect of temperature
Azimuth (degrees W of S)	Temperature coeff. of power (%/*C) -0.5 {}
Ground reflectance (%) 20 {}	Nominal operating cell temp. (*C) 47 {}

Resource Information

43.2 MJ/kg

820 kg/m3

Cancel

ΟK

88 %

0.33 %

Help

Lower heating value:

Carbon content: Sulfur content:

Density:

- **Select Solar Resources, Wind Resources, and Diesel**
- **H** Type in Solar Radiation

H

Ø	average	clearness in	lar resource inputs to dex for each month. H an element or click H	IOMER us	es the latitu	ide val												oran	
Locat	ion																		_
Lat	itude	· ·	' @ N	orth C	South	т	īme zo	ne											
		<u> </u>						+09:00)	Janan	Nort	h Kore	a So	uth Kin	rea			•		
Lor	ngitude	*	' 🖲 Ea	ast O	West	1	(GINT	.03.00)	oupun	, rivoru	Intone	,0, 00	uurito	ieu			<u> </u>		
Data :	source:	Enter	monthly average	s O	Import tin	ne se	ries d	ata file		Getl	Data \	∕ia.Int	ernet						
Base	line data													_					
		Clearness	Daily Radiatio							Cloby	al Hori	rontal	Radiati	ion					
	Month	Index	(kWh/m2/d)		61		1	1	T	GIUD		ZUIItai	Raulau				1	1.0	
	anuary	0.280	(KITTI METG)	2.820			-				-					-			
	ebruary	0.355		3.690	5-				+ +							_		-0.8	
	/larch	0.427		4.490	(g		_				_			_					
A	April	0.529		5.400	Daily Radiation (kWh/m²/d) ວ		_				_	Hr				_	_	- ,	<
N	Aay	0.577		5.570	N N													-0.6	2
	une	0.536		4.990	5.													-	8
Ĵ	uly	0.442		4.170	ie of														Ě
	August	0.423		4.190	Cadi									┺╍┶	-			-0.4	5
	September	0.382		3,950	<u>≥</u> 2-				+ +	+		\square	$\left + \right $	H			+		>
	October	0.343		3.550	Dai	1					_								
	lovember	0.273		2.760	1-													-0.2	
	ecember	0.257		2.550															
	0000111201				0													0.0	
						Jan	Feb	Mar	Apr	May	Jun				ep Oo	t Nov	Dec		
									— D	aily Ra	diation	- (Clearnes	is Index					
	A		0.401	4.011								_		- 1 -	_				
	Average		0.401	4.011								F	Plot		Expo	rt			
S	icaled ar	nnual aver	age (kWh/m²/d)		4.01	{}						ŀ	Help		Cano	el	C	ЭK	
																			_
D	inc		Fuel F)ric	\sim														
$\boldsymbol{\nu}$	162	еі г	-иег г	1IC	,e r	1	-			T 1 (r 1 51
								ter the fu Genera						be chi	anged wi	nen creatir	ng a nev	v fuel (c	lick New
						N		Genera	tormpa		nei nip		10099).						
							Ho	ld the po	pinter ov	er an e	lement	name (or click I	Help fo	r more inf	ormation.			
																_			
									Price	(\$/L))				0.4	Ē {}			
									1 1100	(475	·						_		
									Limite	consu	mptio	n to	(L/yr)		5000) {}			
														,					
									F	uel pri	operti	es —							

Type in Wind Speed

HOMER uses wind resource inputs to calculations, HOMER uses scaled data control how HOMER generates the 871

Resources

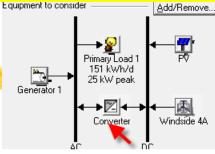
G

Solar resource

Wind resource

Diesel

Hold the pointer over an element or clic


Data so ce: Enter monthly aver

Baseline data -

Month -	Wind Speed
Month	(m/s)
January	3.460
February	3.660
March	3.810
April	3.910
May	3.430
June	3.030
July	3.020
August	2.880
September	2.680
October	2.730
November	3.250
December	3.340
Annual ave	rage: 3.264

Equipment

#Click Converter icon

∺5kW \$4,000

 \sim

A converter is required for systems in which DC components serve an AC load or vice-versa. A converter can be an inverter (DC to AC), rectifier (AC to DC), or both.

Enter at least one size and capital cost value in the Costs table. Include all costs associated with the converter, such as hardware and labor. As it searches for the optimal system, HOMER considers each converter capacity in the Sizes to Consider table. Note that all references to converter size or capacity refer to inverter capacity.

Hold the pointer over an element or click Help for more information.

Size (kW) Capital (\$) Replacement (\$) 0&M (\$/yr) 5.000 4000 0	Sizes to consider Size (kW) 0.000 5.000	12 Cost Curve
	10.000 15.000	C Cost (000 \$)
Inverter inputs		
Lifetime (years)		Size (kW) — Capital — Replacement
Efficiency (%) 90 {}		
Inverter can operate simultaneously with an AC generator		
Rectifier inputs		
Capacity relative to inverter (%) 100 {}		
Efficiency (%)		
		Help Cancel OK

Other Information

Econo

1000 File Other 5 Economics

#Economics

△Real interest 6 %

△ Lifetime 25 years

System Control ○ Cycle-charging

		System control
		Emissions
conon	nic Inputs	
File E	Edit Help	
ß	HOMER applies the economic inputs to each system it simulate present cost.	es to calculate the system's net
	Hold the pointer over an element name or click Help for more in	formation.
	Annual real interest rate (%)	6 {}
	Project lifetime (years)	25 {.}
	System fixed capital cost (\$)	0
	System fixed O&M cost (\$/yr)	0 {}
	Capacity shortage penalty (\$/kWh)	0 {}
	Help	Cancel OK

FIIe t	Edit Help
P	The system control inputs define how HOMER models the operation of the battery bank and generators. The dispatch strateg determines how the system charges the battery bank. Hold the pointer over an element name or click Help for more information.
	Simulation 60
	Dispatch strategy
	 Load following Cycle charging Apply setpoint state of charge (%) 80 {}

Other Information

Emission: all 0	Constraints
e Emiodioni. un o	File File File
This time	Constraints are conditions that systems must meet to be feasible. Infeasible systems do not ap reserve provides a margin to account for intra-hour deviation from the hourly average of the lo margin for each hour based on the operating reserve inputs.
Constraints	Hold the pointer over an element name or click Help for more information.
Operating	Maximum annual capacity shortage (%)
Operating	Minimum renewable fraction (%)
reserve 10%	Operating reserve
	As percent of load
Capacity	Hourly load (%) 10 {}
	Annual peak load (%) 0 {}
shortage 0%	As percent of renewable output
	Solar power output (%) 25 {}
	Wind power output (%) 50 {}
	Primary energy savings
	Minimum primary energy savings (%) 10 {}
	Reference electrical efficiency (%) 33
	Reference thermal efficiency (%) 75 {}

Emission Calcu	ulation in HOMER
 Carbon content of fuel If CO2 is only interest 	Generator Inputs File Edit Help Choose a fuel, and enter at least one size, capital cost and operation and maintenance (D&M) value in the Costs table. Note that the capital cost includes installation costs, and that the D&M cost is expressed in dollars per operating hour. Enter a nonzero heat recovery ratio if heat will be recovered from this generator to serve thermal load. As it searches for the optimal system, HOMER will consider each generator size in the Sizes to Consider table.
Set 0 to CO	Hold the pointer over an element or click Help for more information. Cost Fuel Schedule Emissions Emissions factors
Fuel properties Lower heating value: 43.2 MJ/kg Density: 820 kg/m3 Carbon content: 88 % Sulfur content: 0.33 %	Unburned hydrocarbons (g/L of fuel) 0.72 {} Particulate matter (g/L of fuel) 0.49 {} Proportion of fuel sulfur converted to PM (%) 2.2 {} Nitrogen oxides (g/L of fuel) 58 {}
Help Cancel OK 10080 - Emission calculation Posted by on 15 December 2010 03:49 PM How does HOMER calculate emission, especially carbon dioxide?	Carbon dioxide 99.5 % Carbon monoxide 0.4 % Unburned hydrocarbons 0.1 % Total 100.0 %

If the system you are modeling consumes fuel, HOMER calculates the total annual carbon input by multiplying the fuel consumption by the carbon content of the fuel. It assumes that all that carbon gets emitted as either unburned hydrocarbons, CO, or CO2. You enter the emissions factors for unburned hydrocarbons and CO, so HOMER can calculate how much of the total carbon gets emitted in those two forms. The rest gets emitted as CO2.

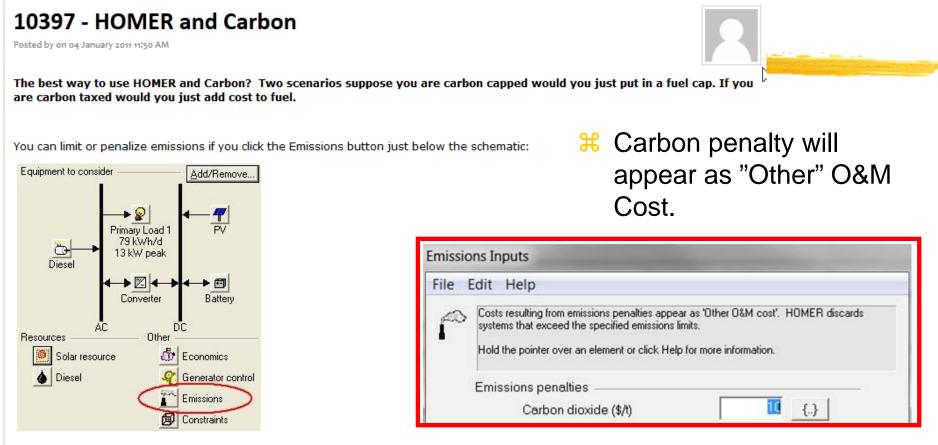
Typically only a tiny fraction of the carbon gets emitted as hydrocarbon and CO, so nearly all of it gets emitted as CO2. If you are interested only in CO2, you should set the UHC and CO emissions factors to zero. Note that 3.67 g of CO2 contains 1 g of carbon. So ignoring UHC and CO emissions, the system will emit 3.67 g of CO2 for every g of carbon in the consumed fuel.

Fuel Carbon Content Fuel properties Lower heating value: 43.2 MJ/kg **#**Diesel Density: 820 kg/m3 Carbon content: 88 % 0.33 % Sulfur content: Help Cancel ΟK Fuel properties Lower heating value: 45 MJ/kg **K**Natural Gas Density: 0.79 kg/m3 67 % Carbon content:

#Gasoline

Gasolin	e Fuel Properties		
	Lower heating value:	44 1	MJ/kg
-	Density:	740	kg/m3
	Carbon content:	86 3	%
	Sulfur content:	0.33	%
	Export XML H	elp	Close

Sulfur content:


0.33 %

Cancel

Help

OK.

Carbon Tax or Penalty

To cap carbon dioxide emissions, click the CO2 checkbox in the lower half of the Emissions window and enter the maximum allowable emissions in kg/yr. To apply a carbon tax enter the penalty in \$/tonne in the top half of the window. Just be sure to enter it in terms of \$/tonne of CO2, not per tonne of carbon.

You can limit fuel consumption if you click on the fuel button below the schematic. That would have the same effect as limiting emissions, but you would have to calculate the amount of fuel corresponding to your emission cap. It's easier to just enter the emission cap. Same with the carbon tax – you could calculate the equivalent cost per litre of fuel and increase the fuel price accordingly, but it's easier to just enter the emission penalty.

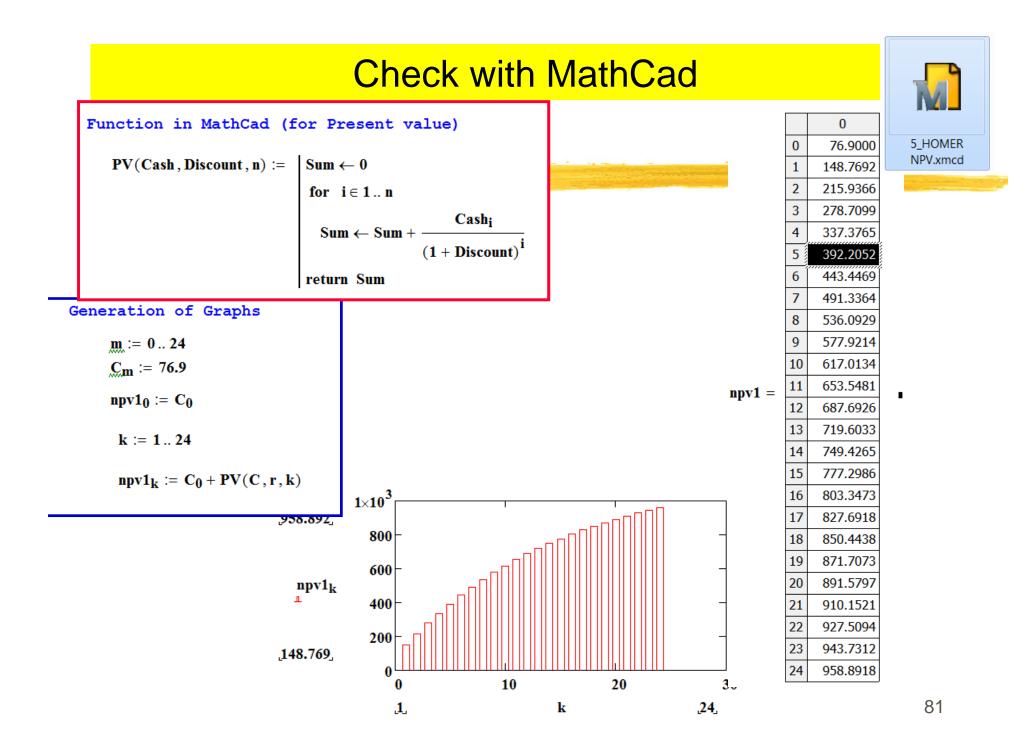
Example

- 3 Generators only to meet a load
 - Diesel generator Carbon 88% of 820 kg per 1000 L
 - Gasoline generator Carbon 86% of 740 kg per 1000L
 - △ Natural Gas generator Carbon 67% of 0.79kg per 1 m³
- ₭ Total fuel consumption for each
 - 🔼 Diesel 10,996 L
 - 🔼 Gasoline 1,762 L
 - \sim Natural Gas 2,613 m³
- 🔀 Carbon Content
 - ➢ Diesel: 820 * 10.996 * 0.88 = 7974 kg/yr
 - └── Gasoline: 740 * 1.762 * 0.86 = 1,121 kg/yr
 - Natural Gas: 0.79 * 2,613 * 0.67 = 1,383 kg/yr
 - ☐ Total = 10,478 kg/yr

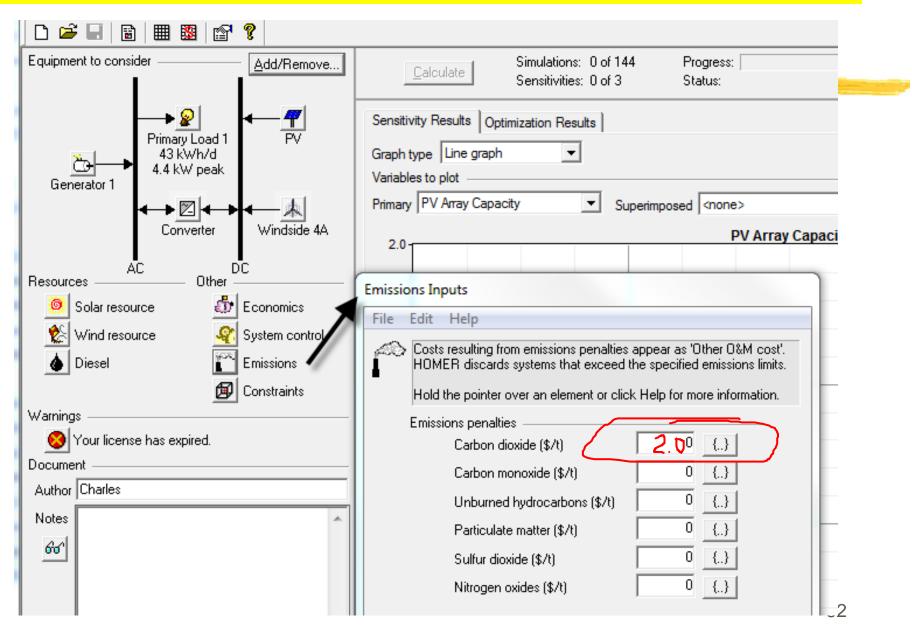
₭ Total CO2

△ 10,478 kg * 3.67 = 38.454 kg CO2/year

K Added O&M Cost per year with \$2 per ton of CO2

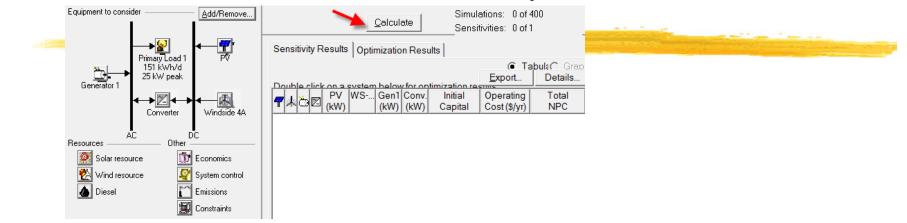

[∧] \$2*38.454 = \$76.9/yr

Emissions


Pollutant	Emissions (kg/yr)
Carbon dioxide	38,097
Carbon monoxide	99.9
Unburned hydocarbons	11.1
Particulate matter	7.53
Sulfur dioxide	79.9
Nitrogen oxides	892

System Report - Example

Project Period = 25 years **Emissions Inputs** File Edit Help Costs resulting from emissions penalties appear as 'Other O&M cost'. HOMER discards tems that exceed the specified emissions limits Net Present Costs Hold the pointer over an element or click Help for more information. Capital Replacement O&M Salvage Fuel Total Emissions penalties Component 10 {..} Carbon dioxide (\$/t) (\$) (\$) (\$) (\$) (\$) (\$) 14,307 22,294,186 112,453 Generator 1 2,000 -217 22,422,726 2.000 6,194,385 Generator 2 7.693 6.151.354 33,794 -457 7.649.564 Generator 3 33,470 7,695,147 4,000 8.125 -12 Other 0 0 974 0 0 974 36,095,104 for no carbon 36,096,072 179,718 System 8.000 30.126 -687 36,313,236 penalty Annualized Costs Capital Replacement O&M Salvage Total Fuel Component (\$/yr) (\$/yr) (\$/yr) (\$/yr) (\$/yr) (\$/yr) Changed O&M 8,797 Generator 1 156 1.119 1,754,056 1,744,001 -17 with \$2 per Generator 2 156 602 481.200 2.644 -36 484.566 ton of CO2 Generator 3 598 400 313 636 2,618 601,966 -1 penalty, for the 0 0 76 0 76 Other 0 14,059 38 ton emission 626 2,823,677 -54 2,840,665 2.357 System per year. \$2x38 = \$76/year2,823,602 for no carbon penalty



Emission Input – Emission Penalty

Analysis of the System

1. Click "Calculate" to start the analysis

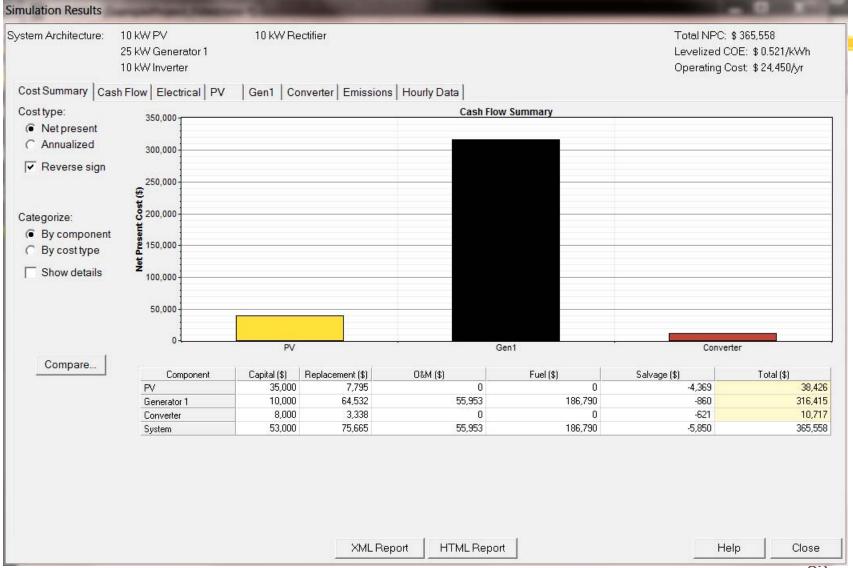
Click Overall: view all possible combinations

			<u>C</u> alcul	ate		ations: 400 tivities: 1 of	of 400 1 -	Progre: Status:		impleted i	n 3 seco	nds.
Sensitivit	y Results	Opti	mizatio	on Resu	lts							
Double cl	lick on a s	system	below	for sim	ulation resul	ts.	Categoriz	Ove	raj E	Export	Detai	ls
 🖈 🔁	<mark>₽V</mark> (kW)	WS		Conv. (kW)	Initial Capital	Operating Cost (\$/yr)	Total NPC	COE (\$/kW	Ren. Frac.	Diesel (L)	Gen1 (hrs)	
<u>ő</u>			25		\$ 10,000	24,713	\$ 325,917	0.464	0.00	38,374		=
7 👲			25	5	\$ 49,000	24,361	\$ 360,419	0.513	0.12	36,573		
			25 25	10 15	\$ 53,000 \$ 57,000	24,450 24,557	\$ 365,558 \$ 370,916	0.521 0.528	0.12 0.12	36,530 36,530	8,7 8.7	
		1	25	5	\$ 44,000	25,964	\$ 375,906	0.535	0.00	-		
7 🖧			25	5	\$ 66,500	24,268	\$ 376,727	0.536	0.17	36,038	8,7	
`	_		30		\$ 12,000	28,814	\$ 380,341	0.542	0.00	43,945	8,7	
7 è	2 15		25	10	\$ 70,500	24,279	\$ 380,866	0.542	0.17	35,813	8,7	
	2	1	25	10	\$ 48,000	26,070	\$ 381,265	0.543	0.00	38,325	8,7	

83

Analysis of the System

Click "Categorized"


				<u>C</u> alculi		Sensit	ations: 400 i∨ities: 1 of	of 400 1	Progres Status:		mpleted i	n 3 seconds.	
	Sensitivity R	esults	Optir	nizatio	n Resul	ts							
	Double click	on a s	ystem	below	for simu	lation resul	ts.	Categoria	O Ove	ral <u>E</u>	xport	Details	_
	- 1	PV (kW)	WS		Conv. (kW)	Initial Capital	Operating Cost (\$/yr)	Total NPC	COE (\$/kW	Ren. Frac.	Diesel (L)	Gen1 (hrs)	
	<u>6</u>			25		\$ 10,000	24,713	\$ 325,917	0.464	0.00	38,374	8,7	-
	7 🖧 🛛	10		25	5	\$49,000	24,361	\$ 360,419	0.513	0.12	36,573	8,7	
	A ÒO 🖂		1	25	5	\$ 44,000	25,964	\$ 375,906	0.535	0.00	38,325	8,7	
	┦॑Ѧѽ҄҄҄҄	10	1	25	5	\$ 79,000	25,508	\$ 405,075	0.577	0.12	36,531	8,7	
Ħ	Now b	ack	< to	"O	vera	all", a	nd cho	oose a	ny s	yst	em c	of	
	interes	st b	ус	lick	ing/	doub	le clic	king					
						Simula	tions: 400 of	400 Pro	aress: 🗌			-	

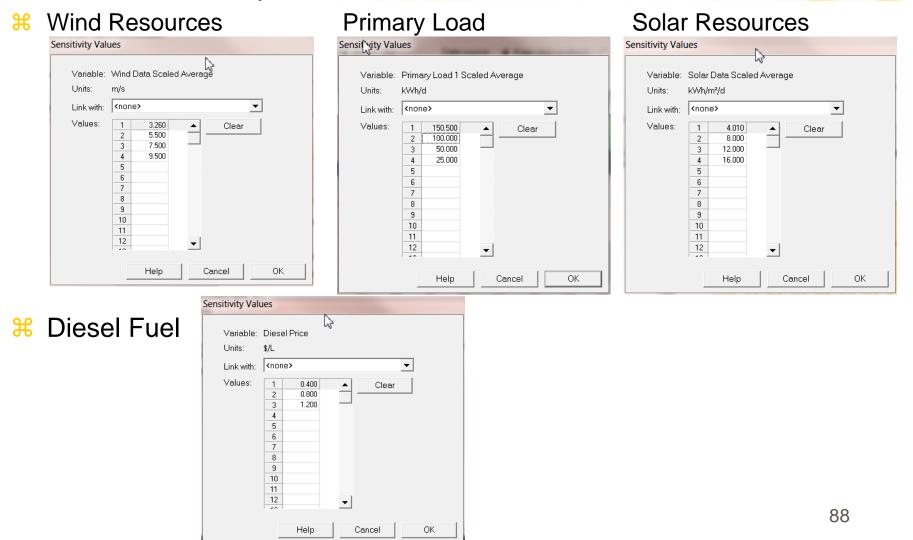
				<u>C</u> alcul	ate		ations: 400 iivities: 1 of	of 400 1	Progre _Status:		ompleted i	n 3 sec	onds
Ser	nsitivity R	esults	Optir	mizatio	n Resu	lts							
Dou	ble click	on a s	ystem	below	for sim	ulation resul	ts.	Categoria	Ove	ral _	<u>E</u> xport	Deta	ails
4	* 🖧 🗷	PV (kW)			Conv. (kW)	Initial Capital	Operating Cost (\$/yr)	Total NPC	COE (\$/kW	Ren. Frac.	Diesel (L)	Gen1 (hrs)	
		10		25	-	\$ 10,000	24,713				38,374	8,7	:
-		10 10		25 25	5 10	\$ 49,000 \$ 53,000	24,361 24,450	\$ 360,419		0.12	36,573 36,530	8,7 8,7	
4	, ÖZ	10		25	15	\$ 57,000	24,557	\$ 370,916			36,530	8,7	
7	⊠¢¢ ⊠¢	15	1	25 25	5 5	\$ 44,000 \$ 66,500	25,964 24,268	\$ 375,906 \$ 376,727		0.00	38,325 36,038	8,7 8,7	

84

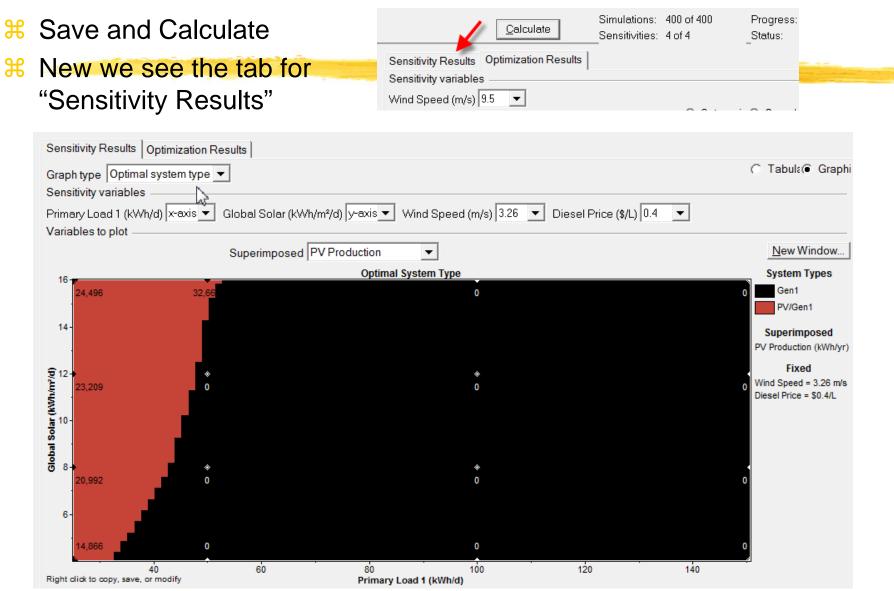
Analysis

¥ Simulation Results

PV Output

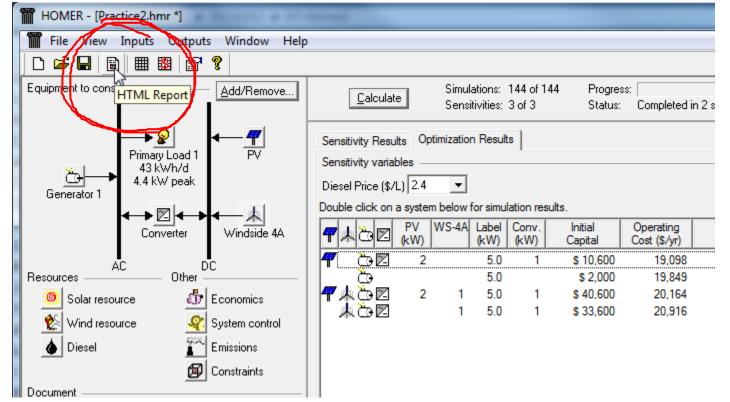

ystem Architecture:	10 kW PV 25 kW Generator 1 10 kW Inverter	10 k	W Rectifier		Total NPC: \$ 365,558 Levelized COE: \$ 0.521/kWh Operating Cost: \$ 24,450/yr
Cost Summary Ca	sh Flow Electrical	PV Gen1	Converter Emissions	Hourly Data	
	Quantity	Value	Units	Quantity Value I	Jnits
	Rated capacity	10.0		Minimum output 0.00 kV	
	Mean output	1.13		Maximum output 9.94 kV	
	Mean output		kWh/d	PV penetration 18.0 %	
	Capacity factor	11.3		Hours of operation 4,380 hr.	/yr
	Total production	9,911	kWh/yr	Levelized cost 0.303 \$/	kWh
24.			PV (Dutput	kW 10 9 8 7
24- 18- 18- 12- 0- 0-				Dutput	KW 10 9 8 7 6 6 5 4 4 3 2 2 1 0

Electrical Output


stem Architecture:	10 KW PV 25 KW Generator 1 10 KW Inverter	10 kW Rectifier					: \$ 365,558 COE: \$ 0.521/kWh Cost: \$ 24,450/yr
ost Summary Ca Production FV array	sh Flow Electrical PV kWh/yr % 9,911 12	Gen1 Converter Em <u>Consump</u> AC primary log	otion kWh/yr	%	Quantity Excess electricity	kWh/yr 30,254	%
Generator 1 Total	76,087 88 85,998 100	Total	54,933		Unmet electric load Capacity shortage	0.000535 0.442	0.0 0.0
					2		
					Quantity Renewable fraction	Valu	ue 0.115
12 T		Monti	nly Average Electric Pro	oduction		1	BV
12		Monti	nly Average Electric Pro	oduction			PV Generator 1
12 9 0 0 0 0		Monti	Ny Average Electric Pro	oduction			
9-	n Feb Mar		Ily Average Electric Pro	oduction			- Generator 1

Sensitivity Analysis on Wind Power

- ∺ Click Wind resource
- Click "Edit Sensitivity Values" >> Do so for Load, Solar, and Diesel

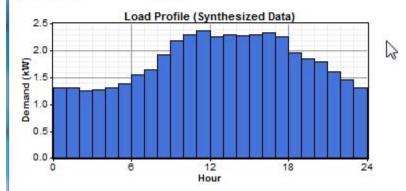

Sensitivity Analysis

HOMER – Input Summary Report

HOMER Produces An Input Summary Report:

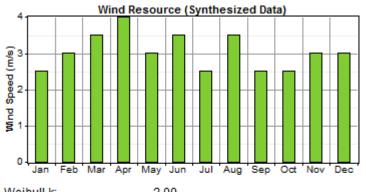
- Click HTML Input Summary from the File menu, or click the toolbar button:
- HOMER will create an HTML-format report summarizing all the relevant inputs, and display it in a browser. From the browser, you can save or print the report, or copy it to the clipboard so that you can paste it into a word processor or spreadsheet program.

Input summary Report - Example


			- Mozilla I	Inclox	1		
<u>F</u> ile	<u>E</u> dit	View	History	<u>B</u> ookmarks	Tools	Help	
() P	ractio	e2.hm	r			+	and the second

HOMER Input Summary

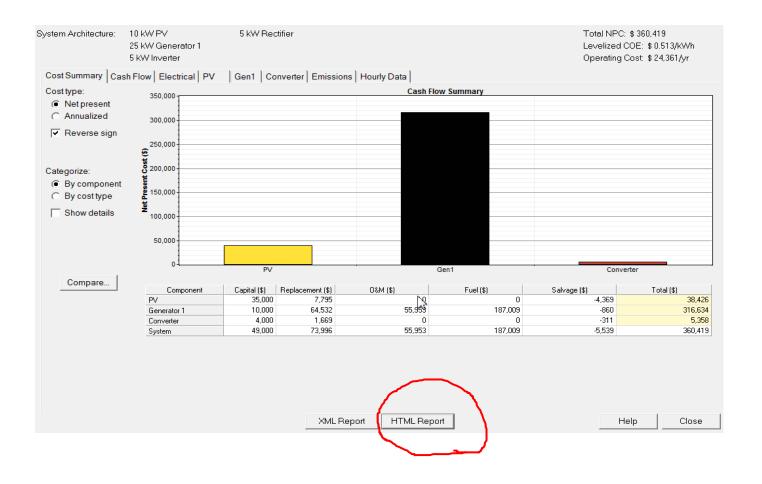
File name: Practice2.hmr File version: 2.68 beta Author: Charles


AC Load: Primary Load 1

Data source:	Synthetic
Daily noise:	15%
Hourly noise:	20%
Scaled annual average:	43.4 kWh/d
Scaled peak load:	4.36 kW
Load factor:	0.414

PV

Size (kW)	Capita	al (\$)	Replace	ement (\$)	O&M (\$/yr)			
2.000	7,000			7,000	0			
Sizes to con Lifetime:	isider:	0, 2, 20 v	4,6 kW					
Derating fac	ctor:	80%						
Tracking sys	stem:	No 1	Fracking					
Slope:		0 de	g					
Azimuth:		0 de	0 deg					
Ground refle	ectance	: 20%	6					


Weldull K:	2.00
Autocorrelation factor:	0.850
Diurnal pattern strength:	0.250
Hour of peak wind speed:	15
Scaled annual average:	3.04 m/s
Anemometer height:	10 m
Altitude:	0 m
Wind shear profile:	Logarithmic
Surface roughness length:	0.01 m

HOMER – Simulation Result System Report

HOMER Produces A Report Summarizing The Simulation Results

Just click the HTML Report button in the Simulation Results window:

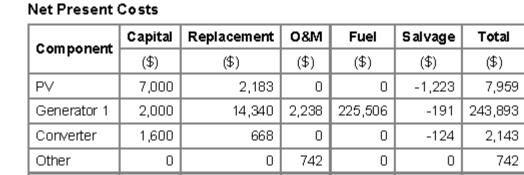
Example System Report

System

10,600

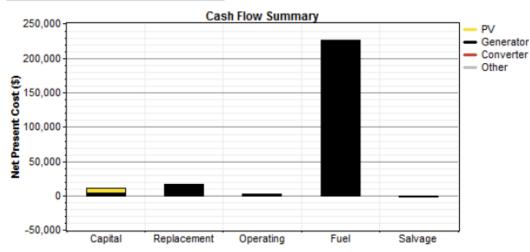
System Report - Practice2.hmr

Sensitivity case


Diesel Price: 2.4 \$/L

System architecture

PV Array	2	k₩
Generator 1	5	кw
Inverter	1	kw
Rectifier	1	K₩

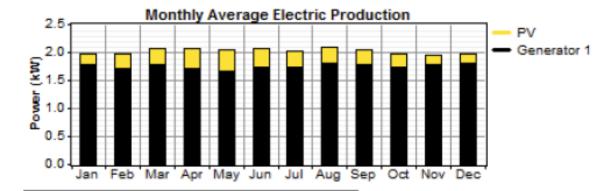

Cost summary

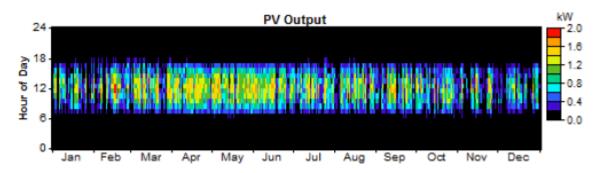
Total net present cost	\$ 254,738
Levelized cost of energy	\$ 1.258/kWh
Operating cost	\$ 19,098/yr

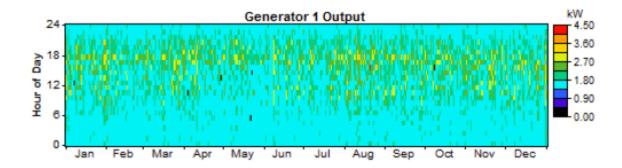
17,191

2,980

Electrical


Component	Production	Fraction	
component	(KWh/yr)		
PV array	2,341	13%	
Generator 1	15,396	87%	
Total	17,737	100%	


225,506


-1,539

254,738

System Report

Emissions

Pollutant	Emissions (kg/yr)	
Carbon dioxide	19,356	
Carbon monoxide	47.8	
Unburned hydocarbons	5.29	
Particulate matter	3.6	
Sulfur dioxide	38.9	
Nitrogen oxides	426	

This message?

Generator 1 search space may be insufficient.

Completed in 3 seconds.

HOMER displays a message suggesting that we add more generator quantities to the sizes to

consider.

File	Edit Help	D				
` -	Note that t Enter a nor the optimal	he capital co nzero heat re I system, HON	st includes installati covery ratio if heat	on costs, and will be recove ach generator	that the O&M cost is expre red from this generator to s size in the Sizes to Consid	nce (0&M) value in the Costs table. ssed in dollars per operating hour. erve thermal load. As it searches for er table.
Cost	Fuel	Schedule	Emissions			
Co	sts				Sizes to consider —	0
	Size (kW)	Capital (\$)	Replacement (\$)	0&M (\$/hr)	Size (kW)	2,000 Cost Curve
	5.000	2000	2000	0.020	0.000	1,500
_					2.500	(f) ts 1.000
					5.000	
		{}}	{}	{}		500
Pro	operties —				-	
	Description	Generator	1 Type	• AC		0 1 2 3 4 5 Size(kW)
			1)00	O DC		- Capital - Replacement
Abbreviation Label						
Lifetime (operating hours) 15000 {}						
	Minimum Io	ad ratio (%)	30	[]		

N

Other messages to appear

PV search space may be insufficient.

Converter search space may be insufficient.

D Completed in 3:17.

- **#** Those messages mean that:
 - you need to expand your search space to be sure you have found the cheapest system configuration.
 - If the total net present cost varied with the PV size in this way, and you simulated 10, 20, 30, and 40 kW sizes, HOMER would notice that the optimal number of turbines is 40 kW, but since that was as far as you let it look, it would give you the "search space may be insufficient" warning because 50 kW may be better yet.
 - \square It doesn't know that until you let it try 50kW and 60kW.
 - If you expanded the search space, HOMER would no longer give you that warning, since the price started to go up so you have probably identified the true least-cost point.