5. Renewable Energy Sources

Part B2: Solar Electricity - 2

Charles Kim, "Lecture Note on Analysis and Practice for Renewable Energy Micro Grid Configuration," 2013. www.mwftr.com

Design Process for Stand-Alone System

Know your object and (future) target : Pac

- Inverter and System Voltage (12, 24, or 48V)
 Relevant to PV output voltage
- ₩ PV Sizing

 $\square P_{dc}$, efficiency, Area, V_{oc}, and I_{sc}.

- **#** Battery Sizing
- Hybrid PV System (Generator Sizing)
- System Cost Analysis

COE (\$/kWh)

Load Study

Kitchen Appliances Refrigerator: ac EnergyStar, 14 cu. ft Refrigerator: ac EnergyStar, 19 cu. ft Refrigerator: ac EnergyStar, 22 cu.ft Refrigerator: dc Sun Frost, 12 cu. ft Freezer: ac 7.5 cu.ft Freezer: dc Sun Frost, 10 cu. ft Electric range (small burner) Electric range (large burner) Dishwasher: cool dry Dishwasher: hot dry Microwave oven Coffeemaker (brewing) Coffeemaker (warming) Toaster **H** TV: 100 W

Power

300 W, 1080 Wh/day 300 W, 1140 Wh/day 300 W, 1250 Wh/day 58 W, 560 Wh/day 300 W, 540 Wh/day 88 W, 880 Wh/day 1250 W 2100 W 700 W 1450 W 750–1100 W 1200 W 600 W 800–1400 W

TV: 100 W Vacuum Cleaner: 1000 W Ceiling Fan: 100 W
 Computer: 125 W Laptop: 20 W Clothes Washer: 250 W
 Window A/C: 1200 W Iron: 1000 W Component Stereo: 40 W
 Clock Radio: 2 W Electric Blanket: 60 W Microwave: 1000 W

1	Α	В	С	D
1		Single Family [kWh]	Town Homes [kWh]	5+ unit Apt [kWh]
2	All Household	7105	4469	3807
3	Electric Heater	1494	724	658
4	Furnace Fan	162	65	51
5	Central Air	1423	713	749
6	Room Air	227	148	105
7	Water Heater	3079	1723	1567
8	Dryer	713	591	548
9	Clothes Washer	127	63	14
10	Dish Washer	84	63	59
11	First Refrigerator	824	769	721
12	Second Refrigerator	1245	739	585
13	Freezer	937	877	908
14	Pool Pump	2671		
15	Spa	467	270	
16	Outdoor Lighting	284	173	206
17	Range/Oven	301	240	207
18	TV	519	465	436
19	Microwave	140	125	122
20	PC	578	591	532
21	Water Bed	840	748	757
22	Well Pump	862	842	816

CA Residential Load Study

st California Statewide Residential Appliance Saturation Study, 2004 $_5$

Energy Consumption Data

South Korea					
Energy Efficiency/CO2' Indicators	Units	1980	1990	2000	2007
Key indicators					
Primary energy intensity (at purchasing power parities (ppp))	koe/\$05p	0.216	0.197	0.226	0.194
Primary energy intensity excluding traditional fuels (ppp)	koe/\$05p	0.204	0.195	0.222	0.188
Primary energy intensity adjusted to EU structure (ppp)	koe/\$05p	0.181	0.166	0.166	0.137
Final energy intensity (at ppp)	koe/\$05p	0.158	0.132	0.132	0.110
Final energy intensity at 2005 GDP structure ³ (ppp)	koe/\$05p	0.153	0.129	0.133	0.109
Final energy intensity adjusted to EU economic structure (ppp)	koe/\$05p	0.135	0.118	0.119	0.098
CO2 intensity (at ppp)	kCO2/\$05p	n.a.	0.497	0.500	0.426
CO2 emissions per capita	tCO2/cap	n.a.	5.48	9.08	10.26
Industry					
Energy intensity of industry (to value added) (at ppp)	koe/\$05p	0.194	0.135	0.146	0.113
Energy intensity of manufacturing (at ppp)	koe/\$05p	0.339	0.211	0.200	0.149
Unit consumption of steel	toe/t	0.36	0.26	0.29	0.32
CO2 intensity of industry ² (to value added) (at ppp)	kCO2/\$05p	n.a.	0.417	0.392	0.280
CO2 emissions of industry ² per capita	tCO2/cap	n.a.	1.61	2.57	2.69
Transport					
Energy intensity of transport to GDP (at ppp)	koe/\$05p	0.025	0.032	0.036	0.029
Average consumption of road transport per equivalent car	toe/car equiv.	n.a.	n.a.	n.a.	n.a.
Unit consumption of goods per ton km	toe/tkm	n.a.	n.a.	n.a.	n.a.
CO2 intensity of transport to GDP (at ppp)	kCO2/\$05p	n.a.	0.092	0.102	0.080
CO2 emissions of transport per capita	tCO2/cap	n.a.	1.02	1.85	1.92
Residential, service and agriculture sectors					
Energy intensity of households (to private consumption) (at ppp)	koe/\$05p	0.071	0.045	0.031	0.033
Average electricity consumption of households per capita	kWh/cap	139	414	789	1130
Average electricity consumption per household	kWh/hh	728	1716	2412	3822
Average electricity consumption of electrified households	kWh/hh	728	1716	2412	3822
Households consumption for electrical appliances and lighting	kWh/hh	0	1541	1980	n.a.
Energy intensity of service sector (to value added) (at ppp)	koe/\$05p	0.032	0.040	0.043	0.035
Electricity intensity of service sector (to value added) (at ppp)	kWh/\$05p	37	70	166	233
Unit consumption of services per employee	toe/emp	n.a.	1.03	1.20	n.a.
Unit electricity consumption of services per employee	kWh/emp	n.a.	1776	4644	n.a.
Energy intensity of agriculture (to value added) (at ppp)	koe/\$05p	0.019	0.054	0.099	0.081
CO2 intensity of households (to private consumption) (at ppp)	кCO2/\$05р	n.a.	0.145	0.058	0.056

Example Electricity Demand

K A modest household monthly energy demand for a cabin:

- 19-cu ft refrigerator
- 6 30W compact fluorescent lamp (5h/day)
- △ 19 in TV (3h/day) connected to a satellite
- Cordless phone
- △ 1000W Microwave (6 min/day)
- △ 250W Washing machine (30 min/day)
- △ 100W pump for 100ft deep well that supplies 120 gallons/day (1.25 h/day)

Power and Energy Demand (3.11kWh/day)

Appliance	Power (W)	Hours	Watt-hours/day	Percentage
Refrigerator, 19 cu. ft	300		1140	37%
Lights (6 @ 30 W)	180	5	900	29%
TV, 19-in., active mode	68	3	204	7%
TV, 19-in., standby mode	5.1	21	107	3%
Satellite, active mode	17	3	51	2%
Satellite, standby mode	16	21	336	11%
Cordless phone	4	24	96	3%
Microwave	1000	0.1	100	3%
Washing machine	250	0.2	50	2%
Well pump, 100 ft, 1.6 gpm	100	1.25	125	4%
Total			3109	100%

System Voltage

System voltage: Inverter dc input voltage = battery bank voltage = PV array voltage

High voltage:

- \square low current \rightarrow minimize wire loss
- More batteries in series

\Re A guideline:

- Keep the maximum steady-state current drawn below around 100A → readily available electrical hardware and wire size can be used
- Suggest system voltage

Maximum ac Power	System dc Voltage
<1200 W	12 V
1200-2400 W	24 V
2400–4800 W	48 V

BOS (Balance of System): Balance of equipment necessary to integrate PV array with site load, which includes the array circuit wiring, fusing, disconnects, and inverter

Comparison of Battery Characteristics

SLI: engine Starting, vehicle Lighting, and engine Ignition

	Max Depth	Energy Density	Cycle Life	Calendar Life	Effici	encies	Cost
Battery	Discharge	(Wh/kg)	(cycles)	(years)	Ah %	Wh %	(\$/kWh)
Lead-acid, SLI	20%	50	500	1-2	90	75	50
Lead-acid, golf cart	80%	45	1000	3-5	90	75	60
Lead-acid, deep-cycle	80%	35	2000	7 - 10	90	75	100
Nickel-cadmium	100%	20	1000 - 2000	10 - 15	70	60	1000
Nickel-metal hydride	100%	50	1000-2000	8-10	70	65	1200

^{*a*} Actual performance depends greatly on how they are used. *Source*: Linden (1995) and Patel (1999).

K Lead-Acid: Cheapest, highest efficiency

- NiCd: Expensive, longer life cycle, dischargeable 100% without damage, more forgivable when abused
- Eithium Iron:

Vanadium Redox (Reduction-Oxidation) Battery

Installed Large Scale Battery Energy Storage

Table I. Examples of installed large scale battery energy storage systems.								
Name	Application	Operational Dates	Power	Energy	Battery Type	Cell Size & Configuration	Battery Manufacturer	
Crescent Electric Membership Cooperative (now Energy United) BESS, Statesville, NC, USA	Peak Shaving	1987-May, 2002	500 kW	500 kWh	Lead-acid, flooded cell	2,080 Ah @ C/5; 324 œlls	GNB Industrial Battery, now Exide Battery	
Berliner Kraft- und Licht (BEWAG) Battery System, Berlin, Germany	Frequency Regulation and Spinning Reserve	1987-1995	8.5 MW in 60 min of frequency regulation; 17 MW for 20 min. of spinning reserve	14 MWh	Lead-acid, flooded cell	7,080 cells in 12 parallel strings of 590 cells each; Cell size: 1,000 Ah	Hagen OCSM cells	
Southern California Edison Chino Battery Storage Project, CA, USA	Several "demo" modes including load- leveling, transmission line stability, local VAR control, black start.	1988-1997	Energy: 14 MW	40 MWh	Lead-acid, flooded cells	8,256 cells in 8 parallel strings of 1032 cells each; Cell size: 2,600 Ah	Exide Batteries GL-35 cells	
Puerto Rico Electric Power Authority (PREPA) Battery System, Puerto Rico	Frequency control and spinning reserve	11/1994-12/1999	20 MW	14 MWh	Lead-acid, flooded cell	6,000 cells in 6 parallel strings of 1000 cells each; Cell size: 1,600 Ah	C&D Battery	
P02000 installation at the Brockway Standard Lithography Plant in Homerville, Georgia, USA	Power Quality, Uninterruptable Power Supply	1996-2001	2 MW	55 kWh	Lead-acid	2000 Low-Maintenance, Truck-Starting Batteries, 48 per 250 kW module, 8 modules per 2 MW PQ2000 system	AC Battery, acquired by Omnion Power Engineering in 1997, in turn acquired by S&C Electric in 1999	
Metlakatla Power and Light (MP&L), Alaska, Battery System, Alaska, USA	Voltage regulation and displacing diesel generation	1997-present	1 MW	1.4 MWh	Valve regulated lead-acid Absolyte IIP	1,134 cells/378 ea., 100A75 modules in 1 string	GNB Industrial Battery, now Exide Technologies, and General Electric	
Golden Valley Electric Association (GVEA) Fairbanks, Alaska, USA	VAR Support, spinning reserve, power system stabilization	9/19/2003-present	27 MW	14.6 MWh	Nickel/cadmium type SBH920 cells	4 strings of 3,440 cells each, for a total of 13,760 cells	ABB and Saft	

Ins	talled L	arge (Scale	Bat	tery -	Continu	ed
alfur	Substation upgrade	2006-present	1.0 MW	7.2 MWh	Sodium/Sulfur	50 kW NAS battery	NGK Insulators

AEP Sodium Sulfur Distributed Energy Storage System at Chemical Station, N. Charleston, WV, USA	Substation upgrade deferral	2006-present	1.0 MW	7.2 MWh	Sodium/Sulfur	50 kW NAS battery modules, 20 ea	NGK Insulators LTD (battery)/ S & C Electric Co. (balance of system)
Long Island, New York Bus Terminal Energy Storage System, NY, USA	Load Shifting	2008-present	1.2 MW	6.5 MWh	Sodium/Sulfur	20 ea. 50 kW (60kW peak) NAS battery modules	NGK Insulators LTD (battery)/ABB Inc. (integration and balance of system)
Vanadium-Redox Battery at the Sumitomo Densetsu Office, Osaka, Japan	Peak Shaving	2000-present	3 MW	800 KWh	Vanadium-Redox Flow Battery	50 kW Sumitomo battery modules	Sumitomo Electric Industries (SEI) of Osaka, Japan
Pacificorp Castle Valley, Utah Vanadium-Redox Battery (VRB) System, Utah, USA	Distribution line upgrade deferral, voltage support	March 2004- present	250 kW	2 MWh	Vanadium-Redox Flow Battery	50 kW Sumitomo battery modules, 250 kW for 8 hours	VRB Power Systems (purchased by Prudent Energy Co., Beijing, China in 2009)

Exterior and interior views of the 2MWh VRB system at Castle Valley, UT.

15

NaS Battery Project

Table II. Na/S battery projects as of december 2009. (Courtesy of NGK.)								
Name of Developer	Country	Location	KW	Start of Operation/Status				
TEPCO (Tokyo Electric Power Company)	Japan	Many locations around Tokyo	200,000 (approx.)	As of the end of 2008				
HEPCO (Hokkaidou Electric Power Company)	Japan	Wakkanai City, Hokkaido	1,500	Feb. 2008				
Other Japanese Electric Companies	Japan	Many locations other than Tokyo area	60,000 (approx.)	As of the end of 2008				
JWD (Japan Wind Development Co., Ltd.)	Japan	Rokkasho Village, Aomori	34,000	Aug. 2008				
AEP (American Electric Power)	USA	Charleston WV, Bluffton OH, Milton WV, Churubusco IN, Presidio, TX	11,000	4 sites except for Presidio: July 2006-Jan. 2009; Presidio: Shipped in Nov. 2009				
NYPA (New York Power Authority)	USA	Long Island, NY	1,000	April 2008				
PG&E (Pacific Gas and Electric Company)	USA	Not decided	6,000	Shipped in 2008				
Xcel	USA	Luverne, MN	1,000	Nov. 2008				
Younicos	Germany	Berlin	1,000	July 2009				
Enercon	Germany	Emden, Lower Saxony	800	July 2009				
EDF	France	Reunion Island	1,000	Dec. 2009				
ADWEA (Abu Dhabi Water & Electricity Authority)	UAE	Abu Dhabi	48,000	Partially operated				
Total			365,300					

Battery Storage Capacity

- Energy Storage: Amp-hour (Ah) at a nominal voltage and at a specified discharge rate
- Ah capacity [C] that would drain from 2V {full charge} to 1.75V {full discharge} (87.5%)
- 12-V 10-h 200-Ah: delivers 20A for 10 h, then the voltage drops to 6x1.75=10.5 V, considered as fully discharged.
- Being in the second s
- # C/20 rate is standard in PV system
- **#** Example of Deep-Cycle Lead-Acid Battery Characteristics

BATTERY	Voltage	Weight (lbs)	Ah @ C/20	Ah @ C/100
Concorde PVX 5040T	2	57	495	580
Trojan T-105	6	62	225	250
Trojan L16	6	121	360	400
Concorde PVX 1080	12	70	105	124
Surette 12CS11PS	12	272	357	503

17

Battery Capacity Example

Deep-cycle batteries intended for photovoltaic systems are often specified at different discharge rates (with C/20 being the most common rating).

Specification					
Nominal Volta	ge		12 volts		
Nominal Capa	city		77° F (25° C)		
> 20-hr. (12	.50A)		230 Ah		
> 10-hr. (23	.25A)		232.5 Ah		
5-hr. (42	.50A)		212.5 Ah		
1-hr. (15	0.00A)		150 Ah		
Approximate \	Neight		154 lbs (70 kgs)		
Internal Resist	ance (approx.)		4 mOHMS		
Shelf Life (% of	f normal capacity	at 77º F (25º C	:))	Charge Method (Consta	nt Voltage)
3 Mont	hs 6	Months	12 Months	Cycle Use (Repeating Us	e)
91%	8	2%	64%	Initial Current	87.5 A or smaller
Temperature	Dependancy of	Capacity	(20 hour rate)	Control Voltage	14.5 - 14.9 V
104° F	77º F	32° F	5° F	Float Use	
102%	100%	85%	65%	Control Voltage	13.6 - 13.8 V

MathCad Solution

Battery Storage.xmcd Charles Kim 2013

A remote telecommunication site needs 2 days of battery storage for the load that needs 500 Ah/day at 12 ∇ . The site may drop to -20 C degrees. It is assumed that, at -20C degrees, the actual capacity of the battery discharged over a 48-hour period is 80% of the rated capacity. Also assumed is that, at -20 C degrees, to avoid freezing, the maximum depth of dischage is limited to 60%.

(Q) Find the Amp-Hours of the storage for the battery bank.

Battery Sizing

- Statistical nature of weather
- No set rules about how best to size battery storage except the cost tradeoff
- Battery system of meeting demand 99% of the time may be 3 times higher in cost than that of meeting 95% of the time.
- Here number of days of storage to supply a load in the design month [the month with the worst combination of insolation and load]
- **Bays of "usable battery storage**" needed for a stand-alone system

Battery Sizing Example

- A cabin near Salt Lake City, Utah, has an ac demand of 3000 Wh/day in the winter months. A decision has been made to size the batteries such that a 95% system availability will be provided, and a back-up generator will be kept in reserve to cover the other 5%. The batteries will be kept in a ventilated shed whose temperature may reach as low as −10°C. The system voltage is to be 24 V, and an inverter with overall efficiency of 85% will be used.
- **#** SOLUTION APPROACH
 - \bigtriangleup 1. AC load \rightarrow DC load demand (with 85% inverted efficiency)
 - 2. Battery Capacity (Ah)
 - ☐ 3. Usable storage (Ah)
 - △ 4. Nominal capacity (Ah)
 - ⊠ Assumption: 80% deep discharge ←MDOD
 - \boxtimes Assumption: 97% discharge rate \leftarrow (T,DR)
 - △ 5. Battery Bank Design

MathCad

Solar Radiation Data Manual

Flat-Plate and Concentrating Collectors

O Individual PDFs

■ Manual (5.5MB) State/Territov Data Tables

■ Alaska (++MB)

Arizona (3.5MB)

■ Arkansas (2MB)

■ California (8.5MB)

■ Colorado (3.5MB)

Connecticut (5MB)

Delaware (1MB)

■ Florida (GMB)

■ Georgia (5.5MB)

■ Hawaii (5.3 MB)

Illinois (+.5MB)

Indiana (3.5MB)

■ Iowa (3.5MB)

■ Kansas (5.3 MB)

1.6/4.8

■ Idaho (2MB)

- Tables include the "Averages of solar radiation for each of the 360 months during the period of 1961-1990" and "30-yea (1961-1990) average of monthly solar radiation".
 - Alabama (3.5MB) ■ Maine (zMB)
 - Maryland (1MB)
 - Massachusetts (2MB)
 - Michigan (11MB)
 - Minnesota (4.5MB)
 - Mississippi (zMB)
 - Missouri (3.5MB)

 - Montana (7.5MB)
 - Nebraska (4.5MB)
 - New Hampshire (IMB)
 - New Jersey (2MB)
 - New Mexico (2MB)
 - New York (6MB)
 - Nevada (5MB)
 - North Carolina (5MB)
 - North Dakota (2.5MB)

- Oklahoma (zMB) ■ Oregon (7.3 MB)
- Pacific Islands (1MB)
- = Pennsylvaria (6.5MB)
- Puerto Rico (IMB)
- Rhode Island (IMB)
- South Carolina (2.5MB)
- South Dakota (3.5MB)
- Tennessee (4.5MB)
- Texas (14.5MB)
- Utah (2MB)
- Vermont (1MB)
- Virginia (4.5MB)
- Washington (4.5MB)
- West Virginia (2.5MB)
- Wisconsin (4.5MB)

29

2.5/2.9

2.9/4.0

3.3/3.0

3.4/5.0

3.214.7

1.3/4.4

30

20/30

Battery Selection - Example

೫ 871 Ah @ 24V

BATTERY	Voltage	Weight (lbs)	Ah @ C/20	Ah @ C/100
Concorde PVX 5040T	2	57	495	580
Trojan T-105	6	62	225	250
Trojan L16	6	121	360	400
Concorde PVX 1080	12	70	105	124
Surette 12CS11PS	12	272	357	503

Battery Types: T-105 and L16

∺T-105

- Trojan Battery Company
- ☐Basic Golf-Cart-Style battery
- ☐Light (62 lb.), cheap (\$90 \$100), 3
 - 6 years or longer

<mark>∺</mark>L16

- More rugged than T-105
- Popularized by Trojan but other companies too
- Heavy (120 lb), expensive (\$220),8 or more years

Hybrid PV Systems

- Supplying load in the worst month ("design month") is much more demanding than the rest of the year
- Hybrid system option: Most of the load covered by PV and the remainder supplied by a generator
- Key decision: relationship between shrinking the PV system size and increasing the fraction of the load carried by the generator
- Example (Salt Lake City case) of significant reduction in PV size while covering high fraction of the annual load.

PV system designed to deliver only 50% of the load in the design month will still cover about 80% of the annual load

35

Batteries and Generators for Hybrid PV Systems

Battery Storage Bank:

- can be smaller since the generator can charge during the poor weather condition
- nominal 3-day storage system is often recommended

∺ Generators: 5 kWh/gallon

	Size			Maintenance Intervals (hours)			
Туре	Range (kW)	Applications	Cost (\$/W)	Oil Change	Tune-up	Engine Rebuild	
Gasoline (3600 rpm)	1-20	Cabin Light use	\$0.50	25	300	2000-5000	
Gasoline (1800 rpm)	5-20	Residence Heavy use	\$0.75	50	300	2000-5000	
Diesel	3-100	Industrial	\$1.00	125-750	500-1500	6000	

Source: Sandia National Laboratories (1995).

Pressure Loss due to Friction

Plastic Pipe

Feet of Water per 100ft of Tube for various tube diameters

0.5 in.	0.75 in.	1 in.	1.5 in.	2 in.	3 in.
1.4	0.4	0.1	0.0	0.0	0.0
4.8	1.2	0.4	0.0	0.0	0.0
10.0	2.5	0.8	0.1	0.0	0.0
17.1	4.2	1.3	0.2	0.0	0.0
25.8	6.3	1.9	0.2	0.0	0.0
36.3	8.8	2.7	0.3	0.1	0.0
63.7	15.2	4.6	0.6	0.2	0.0
97.5	26.0	6.9	0.8	0.3	0.0
	49.7	14.6	1.7	0.5	0.0
	86.9	25.1	2.9	0.9	0.1
	0.5 in. 1.4 4.8 10.0 17.1 25.8 36.3 63.7 97.5	0.5 in. 0.75 in. 1.4 0.4 4.8 1.2 10.0 2.5 17.1 4.2 25.8 6.3 36.3 8.8 63.7 15.2 97.5 26.0 49.7 86.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

gpm: Gallons per minute

41

Friction Loss in Elbows and Valves

Friction loss expressed as equivalent lengths of tube

Fitting	0.5 in.	0.75 in.	1 in.	1.5 in.	2 in.	3 in.
90-degree ell	1.5	2.0	2.7	4.3	5.5	8.0
45-degree ell	0.8	1.0	1.3	2.0	2.5	3.8
Long sweep ell	1.0	1.4	1.7	2.7	3.5	5.2
Close return bend	3.6	5.0	6.0	10.0	13.0	18.0
Tee-straight run	1.0	2.0	2.0	3.0	4.0	
Tee—side inlet or outlet	3.3	4.5	5.7	9.0	12.0	17.0
Globe valve, open	17.0	22.0	27.0	43.0	55.0	82.0
Gate valve, open	0.4	0.5	0.6	1.0	1.2	1.7
Check valve, swing	4.0	5.0	7.0	11.0	13.0	20.0

^aUnits are feet of pipe for various nominal pipe diameters.

Interpretation: 0.75in 90-degree elbow adds to the pressure drop of the same amount as would 2.0ft of straight pipe.

Static Head + Friction Head = Total Dynamic Head (H)

Ħ

Pumping Head Calculation Example

- A pump is required to deliver 4 gpm from a depth of 150 ft. The well is 80 ft from the storage tank, and the delivery pipe rises another 10 ft. The piping is 3/4-in.diameter plastic, and there are three 90° elbows, one swing-type check valve, and one gate valve in the line.
- ₭ Q: What is the pumping head?

	Solution							
¥ ¥	Length of pipe = $150+80+10=240$ ft Equivalent pipe length for 3 elbows: $3x2.0=6$ ft	Fitting		0.5 in.	0.75 in			
ю Н	Equivalent pipe length for sheck valve: 5.0 ft	90-degree ell		1.5	2.0			
70	Eq. pipe length for the gate valve (open): 0.5 ft Total Eq. Pipe Length: 240+6+5+0.5=251.5 ft	45-degree ell		0.8	1.0			
ж		Long sweep	ell	1.0	1.4			
¥		Close return	bend	3.6	5.0			
		Tee—straight run		1.0	2.0			
		Tee—side in	let or outl	et 3.3	4.5			
		Globe valve,	open	17.0	22.0			
		Gate valve, o	pen	0.4	0.5			
		Check valve,	swing	4.0	5.0			
€	Pressure drop at 4 gpm per 100ft pipe: 4.2 ft	gpm	0.5 in.	0.75 in.				
Ħ	Therefore, the Friction head = [4.2 x 251.5] /							
	[100] = 10.5 ft	1	1.4	0.4				
¥	Static Head = 150+10 = 160 ft	2	4.8	1.2				
¥	Total Head = 160 + 10.5 = 170.5 ft of water	3	10.0	2.5				
	pressure	4	17.1	4.2				
		5	25.8	0.3				
		8	50.5 63.7	0.0				
		0 10	97.5	26.0				
		15	71.5	49 7				
		20		86.0	44			

Solution by MathCad

Pumping head.xmcd Charles Kim 2013

A pump is required to deliver at 4 GPM from a depth of 150 ft. The well is 80 ft from the storage tank, and the delivery pipe rises another 10 ft. The piping is 3/4 in. diameter plastic and there are three 90 degree elbows, one swing-type valve, and one gate valve in the line.

(Q) What is the pumping head

Per 100 ft

Fitting

15

20

90-degree ell

45-degree ell

Long sweep ell

Close return hend

0.5 in.

1.5

0.8

1.0

0.75 in.

2.0

1.0

1.4

5.0

2.0

4.5

22.0 0.5

5.0

Close re fee—st fee—si Globe v Gate va Check v	3.6 1.0 3.3 17.0 0.4 4.0		
gpm	0.5 in.	0.75 in.	
1	1.4	0.4	
2	4.8	1.2	
3	10.0	2.5	
4	17.1	4.2	
5	25.8	6.3	
6	36.3	8.8	
8	63.7	15.2	
10	97.5	26.0	

49.7

86.9

	Hydrauli	c Pumps				
ж	Different flow rate will result	s in different pump head				
æ	To determine the actual flow	v for a given pump, we nee	d to know			
	the characteristics of the pu	mp				
ж						
hidin	Centrifugal pump					
	 Fast spinning impellers created the delivery side, which throw Limited by the ability of atmost of the number theoretical maximum set of the number of the num	e suction input side of the pump and co water out of the pump sphere pressure to push up water into c is 32 ft	eate pressure on the suction side			
	\sim Positive displacement pum	D				
	✓ Helical pumps: rotating shaft	r to push water up a cavity				
	 ☑ Jack pumps: oscillating arm c ☑ Diaphragm pumps: rotating c ☑ Most useful in low volume ap 	lrives shaft up and down (like the class am opens and closes valves plications	sic oil-rig pumper			
Centrifugal Positive Displacement						
High-speed impellersVolumetric movementLarge flow ratesLower flow rates						
						Loss of flow with higher heads
	Low irradiance reduces ability to achieve head	Low irradiance has little effect on head				
	Potential grit abrasion	Unaffected by grit	47			

Some Solar (Sun) Pump

SR2 Aluminum Pump. Part # (535472-2)

\$ 820.00 (NO additional controller required!)

2 Piston brushless motor submersible solar pump.

Over volt protection. Thermal over load protection to help from over heating and causing damage. Abrasion & Corrosion resistant.

Aluminum Housing and Head. Reverse polarity protection.

Brushless Motor 12-40 volts operating range.

Max gpm 3 at no lift or pressure, flows decrease as lift and pressure increase.

These SR series aluminum pumps come with a 2 yr. warranty. Factory rebuildable. Designed CNC Aluminum parts. Positive displacement pumps. Lightweight and durable. Temporary run dry capability. Come standard with 100ft. of wire attached so no under water splice is needed. (actual product appearance or color may vary) SR4 Pumps require a 5" diameter or larger well casing. SR2 Pumps require a 4" or larger diameter well casing. SR4 Aluminum Pump Part # (535474-2)

\$930.00 (NO additional controller required!)

4 Piston brushless motor submersible solar pump. 2 yr. warranty

Over volt protection. Thermal over load protection to help from over heating and causing damage. Abrasion & Corrosion resistant.

Aluminum Housing and Head. Reverse polarity protection.

Brushless Motor 12-40 volts operating range.

Max gpm 3.75 at no lift of pressure, flows decrease as lift and pressure increase.

49

Solar Pumps

Pump Features Matrix

Feature / Capability	SlowPump	Flowlight Booster	SunCentric	Solar Force Piston Pump	Solaram
Dirty-Water Tolerance	No	No	Yes	Yes	Yes
Dry-Run Tolerance *short intervals only	No	No	High Temp: Yes Standard Temp: No	Yes	Yes
Intended for Pressure Applications	Yes	Yes	No	Yes	Yes
Pump Controller *if/when solar-direct model available	Yes	No	No	Yes	Yes
Max Flow per Hour	372gal (1408 ltr)	270gal (1022 ltr)	4200gal (15898 ltr)	558gal (2112 ltr)	564gal (2135 ltr)
Max Suction Lift *at Sea Level	20ft (6m)	Standard Speed (2920): 10ft (3m) Low Speed (2910): 20ft (6m) Heavy Duty (2930): 20ft (6m)	10ft (3m)	25ft (7.6m)	25ft (7.6m)
Max Total Dynamic Head (TDH)			1		
Expressed in Vertical Distance	560ft (170m)	150ft (46m)	90ft (27m)	230ft (70m)	1000ft (305m)
Expressed in Pressure	242psi (16.7 bar)	65psi (4.5 bar)	39psi (2.7 bar)	100psi (6.8 bar)	433psi (30 bar)
High-Temp Upgrade Option	Yes	Yes	Yes	No	No
Stainless Steel Upgrade Option	Yes	Yes	No	Yes	No
Warranty *against defects in materials & workmanship	1 Year	1 Year	2 Years	2 Years	1 Year
Maintenance	Consistent filter changes Large Parts Replacement: 7-10 years	Consistent filter changes Large Parts Replacement: 7-10 years	Small Parts Replacement: 5-7 years	Light Maintenance: Every year Large Parts Replacement: 7-10 years	Light Maintenance: Every year Large Parts Replacement: 7-10 years
Life Expectancy *with proper installation & maintenance	15-20 Years	15-20 Years	15-20 Years	20 Years	20 Years
Weight	12-29lbs (5-13kg)	15lbs (7kg)	49-70lbs (23-32kg)	115lbs (53kg)	150lbs (68kg)

www.dankoffsolarpumps.com

Power delivered by pump

$$P = \rho H Q$$
 ρ is fluid density

conversion factors... 453.54 g = 1 lb 1000 mL = 1L 1000 L = 264.17 gal

In American units

conversion equation... (1.00g/mL) x (1lb / 453.54g) x (1000 mL / 1L) x (1000 L / 264.17 gal) = 8.35 lbs/gal

$$P(\text{watts}) = 8.34 \text{ lb/gal} \times H(\text{ft}) \times Q(\text{gal}/\text{min}) \times (1 \text{ min}/60 \text{ s})$$

 $\times 1.356 \text{ W}/(\text{ft-lb/s})$ $P(\text{watts}) = 0.1885 \times H(\text{ft}) \times Q(\text{gpm})$ In SI units, $P(\text{watts}) = 9.81 \times H(\text{m}) \times Q(\text{L/s})$

Example-Solution (continued)

Buck Converter as Linear Current Booster

 \mathbb{H} Low sun \rightarrow not enough torque to pump

E Lower voltage and increase current → lower speed pumping, but
 pumping anyway

