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Chapter 2

Instructions: Language of the Computer
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Chapter 2

Part C
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Procedure Calling

• Procedure [subroutine]
– Tool for structuring programs
– Code reuse
– Pass values
– Return results

• Register Convention in Procedure Calling
– $a0 - $a3 : Parameter passing
– $v0 - $v1: Result returning
– $ra: Return address (automatically saved)
– Stack is used when more arguments and more results are involved

• Saved and unsaved registers by the callee (i.e. subroutine) in the procedure 
calling

– Saved: $s0 - $s7
– Unsaved: $t0 - $t9

• Procedure calling instruction
– jal

• Ending procedure
– jr $ra
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Exercise of Procedure Calling
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Using Stack for save/retrieve
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Procedure calling (p81) p1/2
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Procedure calling (p81) p2/2

Assignment
– Revise the code so that it receives the values of g, h, i, and j from 

keyboard
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Nested Procedures

• Possible Conflicts
– Argument Register Values
– Return Address values

• One Solution?
– Caller: Push any argument registers ($a0 - $a3), temporary 

registers ($t0 - $t9) that are need after call to stack.  Upon return, 
restore the registers from the stack.

– Callee: Push the return address ($ra) and saved registers ($s0 -
$s7) to stack

• Example (p.83) - recursive procedure that calculates factorial
Int fact (int n)

{

if (n<1) return (1);

else return (n* fact (n-1));
}

• Argument n ---> $a0

• Return Address ($ra)

• Output f --> $s0



11

Factorial Calculation Details (1)
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Factorial Calculation Details (2)
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Factorial Calculation Details (3)
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Factorial Calculation Details (4)
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Factorial Calculation Details (5)
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Nested Procedure Calling (p.83)



17

Nested Procedure Calling (p.83)-Conti.



18

Coding Exercise (p.123) - Bubble Sort

• Bubble Sort
– Simplest way of sorting array of objects
– Maybe slowest too
– Compare neighboring two objects, and swap them if the order in 

in the wrong way

for (i=0; i<n-1; i++) { /* number of array is n */

for (j=0; j<n-1-i; j++)

if (a[j+1] < a[j]) { /* compare the two neighbors */

tmp = a[j]; /* swap a[j] and a[j+1] */

a[j] = a[j+1];

a[j+1] = tmp;

}

}

• Passes
– Each pass moves the biggest number to the end of the array
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Bubble Sort Exercise (p.123) - conti
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Bubble Sort Code (1)
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Bubble Sort Code (2)
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Bubble Sort Code (3)
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Bubble Sort Code (4)
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Insertion Sort

• it inserts each item into its proper place 
• moving the current item past the already sorted items 

and repeatedly swapping it with the preceding item 
• Twice as efficient as bubble sort

int i, j, tmp;

for (i=1; i < array_size; i++) {

tmp = A[i];

j = i;

while ((j > 0) && (A[j-1] > tmp)) {

A[j] = A[j-1];

j = j - 1;

}

A[j] = tmp;

}
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Insertion Code Illustration
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Project 1 - Insertion Code

• Read 10 numbers from keyboard
• Sort them by Insertion Sort algorithm
• Print the sorted numbers in the order
• Use only core MIPS instructions (no pseudo-

instruction)
• Showing each step would earn extra points
• Due: in 2 weeks
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• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three  instruction formats

• rely on compiler to achieve performance
— what are  the compiler's goals?

• help compiler where we can

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

Overview of MIPS
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• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 °
$t5

beq $t4,$t5,Label Next instruction is at Label if  $t4 = $t5

j Label Next instruction is at Label 

• Formats:

• Addresses are not 32 bits 
— How do we handle this with load and store instructions?

op rs rt 16 bit address

op 26 bit address

I

J

Addresses in Branches and Jumps
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• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC 
– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches
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summary
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform 

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic.  MIPS register $zero always equals 0.  Register $at is 
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to             
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to             
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3)  $s1 = 1;          
else $s1 = 0

Compare less than; for beq, bne

set less than 
immediate

slti $s1, $s2, 100 if ($s2 < 100)  $s1 = 1;          
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call
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Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+
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• Design alternative:
– provide more powerful operations
– goal is to reduce number of instructions executed
– danger is a slower cycle time and/or a higher CPI

• Let’s look (briefly) at IA-32

Alternative Architectures

–“The path toward operation complexity is thus fraught with peril.  
To avoid these problems, designers have moved toward simpler 
instructions”
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IA - 32

• 1978:  The Intel 8086 is announced (16 bit architecture)
• 1980:  The 8087 floating point coprocessor is added
• 1982:  The 80286 increases address space to 24 bits, +instructions
• 1985:  The 80386 extends to 32 bits, new addressing modes
• 1989-1995:  The 80486, Pentium, Pentium Pro add a few  instructions

(mostly designed for higher performance)
• 1997:  57 new “MMX” instructions are added, Pentium II
• 1999:  The Pentium III added another 70 instructions (SSE)
• 2001:  Another 144 instructions (SSE2)
• 2003:  AMD extends the architecture to increase address space to 64 bits,

widens all registers to 64 bits and other changes (AMD64)
• 2004:  Intel capitulates and embraces AMD64 (calls it EM64T) and adds

more media extensions

• “This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love” 
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IA-32 Overview

• Complexity:
– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult to 
build

– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity, 
making it beautiful from the right perspective”
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IA-32 Registers and Data Addressing

• Registers in the 32-bit subset that originated with 80386

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use
031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS



36

IA-32 Register Restrictions

• Registers are not “general purpose” – note the restrictions below
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IA-32 Typical Instructions

• Four major types of integer instructions:
– Data movement including move, push, pop
– Arithmetic and logical (destination register or memory)
– Control flow (use of condition codes / flags )
– String instructions, including string move and string compare



38

• Instruction complexity is only one variable
– lower instruction count vs. higher CPI / lower clock rate

• Design Principles:
– simplicity favors regularity
– smaller is faster
– good design demands compromise
– make the common case fast

• Instruction set architecture
– a very important abstraction indeed!

Summary




