
1

EECE 417 Computer Systems Architecture

Department of Electrical and Computer Engineering
Howard University

Charles Kim

Spring 2007

faculty
Typewritten Text
WWW.MWFTR.COM

2

Computer Organization and Design (3rd Ed)
-The Hardware/Software Interface

by

David A. Patterson
John L. Hennessy

3

Chapter 2

Instructions: Language of the Computer

4

Chapter 2

Part C

5

Procedure Calling

• Procedure [subroutine]
– Tool for structuring programs
– Code reuse
– Pass values
– Return results

• Register Convention in Procedure Calling
– $a0 - $a3 : Parameter passing
– $v0 - $v1: Result returning
– $ra: Return address (automatically saved)
– Stack is used when more arguments and more results are involved

• Saved and unsaved registers by the callee (i.e. subroutine) in the procedure
calling

– Saved: $s0 - $s7
– Unsaved: $t0 - $t9

• Procedure calling instruction
– jal

• Ending procedure
– jr $ra

6

Exercise of Procedure Calling

7

Using Stack for save/retrieve

8

Procedure calling (p81) p1/2

9

Procedure calling (p81) p2/2

Assignment
– Revise the code so that it receives the values of g, h, i, and j from

keyboard

10

Nested Procedures

• Possible Conflicts
– Argument Register Values
– Return Address values

• One Solution?
– Caller: Push any argument registers ($a0 - $a3), temporary

registers ($t0 - $t9) that are need after call to stack. Upon return,
restore the registers from the stack.

– Callee: Push the return address ($ra) and saved registers ($s0 -
$s7) to stack

• Example (p.83) - recursive procedure that calculates factorial
Int fact (int n)

{

if (n<1) return (1);

else return (n* fact (n-1));
}

• Argument n ---> $a0

• Return Address ($ra)

• Output f --> $s0

11

Factorial Calculation Details (1)

12

Factorial Calculation Details (2)

13

Factorial Calculation Details (3)

14

Factorial Calculation Details (4)

15

Factorial Calculation Details (5)

16

Nested Procedure Calling (p.83)

17

Nested Procedure Calling (p.83)-Conti.

18

Coding Exercise (p.123) - Bubble Sort

• Bubble Sort
– Simplest way of sorting array of objects
– Maybe slowest too
– Compare neighboring two objects, and swap them if the order in

in the wrong way

for (i=0; i<n-1; i++) { /* number of array is n */

for (j=0; j<n-1-i; j++)

if (a[j+1] < a[j]) { /* compare the two neighbors */

tmp = a[j]; /* swap a[j] and a[j+1] */

a[j] = a[j+1];

a[j+1] = tmp;

}

}

• Passes
– Each pass moves the biggest number to the end of the array

19

Bubble Sort Exercise (p.123) - conti

20

Bubble Sort Code (1)

21

Bubble Sort Code (2)

22

Bubble Sort Code (3)

23

Bubble Sort Code (4)

24

Insertion Sort

• it inserts each item into its proper place
• moving the current item past the already sorted items

and repeatedly swapping it with the preceding item
• Twice as efficient as bubble sort

int i, j, tmp;

for (i=1; i < array_size; i++) {

tmp = A[i];

j = i;

while ((j > 0) && (A[j-1] > tmp)) {

A[j] = A[j-1];

j = j - 1;

}

A[j] = tmp;

}

25

Insertion Code Illustration

26

Project 1 - Insertion Code

• Read 10 numbers from keyboard
• Sort them by Insertion Sort algorithm
• Print the sorted numbers in the order
• Use only core MIPS instructions (no pseudo-

instruction)
• Showing each step would earn extra points
• Due: in 2 weeks

27

• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three instruction formats

• rely on compiler to achieve performance
— what are the compiler's goals?

• help compiler where we can

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

Overview of MIPS

28

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 °
$t5

beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5

j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store instructions?

op rs rt 16 bit address

op 26 bit address

I

J

Addresses in Branches and Jumps

29

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches

30

summary
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

31

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

32

• Design alternative:
– provide more powerful operations
– goal is to reduce number of instructions executed
– danger is a slower cycle time and/or a higher CPI

• Let’s look (briefly) at IA-32

Alternative Architectures

–“The path toward operation complexity is thus fraught with peril.
To avoid these problems, designers have moved toward simpler
instructions”

33

IA - 32

• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits, +instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher performance)
• 1997: 57 new “MMX” instructions are added, Pentium II
• 1999: The Pentium III added another 70 instructions (SSE)
• 2001: Another 144 instructions (SSE2)
• 2003: AMD extends the architecture to increase address space to 64 bits,

widens all registers to 64 bits and other changes (AMD64)
• 2004: Intel capitulates and embraces AMD64 (calls it EM64T) and adds

more media extensions

• “This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

34

IA-32 Overview

• Complexity:
– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult to
build

– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

35

IA-32 Registers and Data Addressing

• Registers in the 32-bit subset that originated with 80386

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use
031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

36

IA-32 Register Restrictions

• Registers are not “general purpose” – note the restrictions below

37

IA-32 Typical Instructions

• Four major types of integer instructions:
– Data movement including move, push, pop
– Arithmetic and logical (destination register or memory)
– Control flow (use of condition codes / flags)
– String instructions, including string move and string compare

38

• Instruction complexity is only one variable
– lower instruction count vs. higher CPI / lower clock rate

• Design Principles:
– simplicity favors regularity
– smaller is faster
– good design demands compromise
– make the common case fast

• Instruction set architecture
– a very important abstraction indeed!

Summary

