EECE499 – Homework #2 Due (F) Feb 18

SOLUTION

1. Find the voltage at node2, V₂.

As you see above, we already have all the marks for nodes and the reference.

Solution

1. KCL at node 1: Since we already know the node voltage $V_1=60$, we do not need equation at node 1.

2. KCL at node 2: $\left\{\frac{V_2 - 60}{2} + \frac{V_2}{24} + \frac{V_2 - V_3}{3} = 0\right\},\$

Simplification yields: $\{21V_2 - 8V_3 = 720\}$ -----(1)

3. KCL at node 3: Since we have two variables in one equation (1), we'd better find one relationship that connects the V_2 and V_3 . <u>In other words, in this example, we do not have to define a current through the dependent source</u>.

First we relate the current i_x in terms of V_2 and V_3 : { $\frac{V_3 - V_2}{3} = i_x$ }

Second, we get the V₃ directly from the circuit: (hint apply KVL around the outer loop): { $V_3 = 6i_x + 60$ }

If we combined these two, we finally have: $\{V_3 = 6\frac{V_3 - V_2}{3} + 60 - V_3 = 2V_2 - 60\} - (2)$ 4. By equation (1) and (2), we have: $V_2 = (48)$ 2. Using node-voltage method, find the current i_{10} .

SOLUTION

- Step 1: Essential nodes
- Step 2: Reference
- Step 3: Node voltage equations.

@node 2:
$$\frac{V_2 - 10}{10} + \frac{V_2}{40} + \frac{V_2 - V_3}{20} = 0 - 7V_2 - 2V_3 = 40 - (1)$$

@node 1: $-i_x + \frac{10 - V_2}{10} + \frac{10 - V_3}{30} = 0$

Since V₃=-20i_x or $i_x = -\frac{V_3}{20}$, the equation @node 1 becomes: $\frac{V_3}{20} + \frac{10 - V_2}{10} + \frac{10 - V_3}{30} = 0 - 6V_2 - V_3 = 80 - (2)$

From (1) and (2): V₂=24 and V₃=64

Your answer:
$$i_{10} = \underbrace{i_{10}}_{i_{10}} = \frac{24 - 10}{10} = 1.4$$