Chapter 16. Digital Control using PC with IR 442

Chapter 16. Digital Control using PC with IR

1. Introduction

This chapter is based on a student project, "DigiHouse" by Scotty Mazyck Il completed in Spring
2003, which aims to control home appliances using a PC. The essence of "DigiHouse", in PIC
16F877 application point of view, uses two hardware components, one with a 16F877 and other
necessary parts and elements, and the other without any microcontroller but with an IR decoder
circuit. The one hardware component, IR Master station, contains a 16F877 microcontroller, IR
encoder, IR receive, and a serial communication level converter chip RS232 chip. The RS232
chip, when you use a USB based PIC board such as PIC-40-USB from Olimex, is not necessary.
The USB control chip in the PIC board handles all serial communication from 16F877. The
other component, IR Receiver/Controller, contains an IR receiver and IR decoder circuit. The IR
decoder circuit has three LED outputs to simulate the three home appliances this project intends
to control. Scotty Mazyck's report on his project DigiHouse contains many interesting aspects:
IR transmission, IR encoding, IR reception, and a Visual Basic-based Windows program which,
in place of the HyperTerminal, allows a serial communication link between a PC and the IR
Master station. This comprehensive work, however, is not properly documented. The project
report submitted to me, less than 4 page length, only briefly touches its components and coding.

So | reconstructed his project with much more detailed explanation in words and illustrations.
However, | did not change his code except the file register bank changing operations. For
example, moving from bank 0 to bank 1 to access TRI SC register, the original code bothers to
set the RP1 bit of STATUS register. This works fine and perfect. However, we can use the
MPLAB directive banksel to ignore in which bank we are, and to move any bank where the
register we try to access is located. With banksel , we do not have to frequently look up the
file register table to see where a particular register is located.

2. Digital Control using PC - overview

In the Internet age, everybody gets lazy, and our life hinges on network and computer. Now |
am very sorry that | provide one more convenience so that you become lazier and more inactive.
This example is to control your home appliances like lamps, microwave, heater, or A/C from and
using your PC. Of course computer alone cannot do the job. A microcontroller would be just
fine to fit in to the case. The term "control™ here means a simple on/off control of the appliances.

As we know IR remote control is everywhere and for most of our electronic appliances at home
and office. We use IR remote to turn on/off of TV, VCR, CD player, DVD player, etc. But how
do we do the same functions using a PC instead of an IR remote? There must be a way to
communicate from PC to "IR remote" like device, which can transmit IR information as an IR
remote does. This requirement is realized by the IR Master Station. The IR Master station is
built around the PIC 16F877 which establishes serial communication with PC and transmits IR
data to the IR-ready electronic appliances. In chapter 5, we already discussed about the serial
communication, therefore, the communication between PC (using the Hyperterminal in
Windows) is not bit a problem. However, if you want to open up your own window in the PC
screen with your name or your log, the Hyperterminal cannot be used. Instead, a windows

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 443

program based on Visual tool such as Visual Basic is needed. This Visual Basic code is
discussed in a separate section.

Microwave
s _“""--.___h
) _--"-‘
@f ’
<

Heater

with PC r*

Fig. 101 Control of Home appliances from and using the PC

Then, how do we control those appliances that are not equipped with IR receiver. Most of the
home appliances like lamp, microwave, heater, etc are all not IR-ready devices. Here comes the
IR Receiver/Controller which is built around an IR receiver and decoder so that a select line
could be turned on or off (of course logically). This logical on/off (High or Low, or +5V or 0V)
can turn on/off an electronic switch connected to the appliance. In this example, however, we
simplified the control part by LED on/off at the IR Receiver/Controller side. In the circuit we
installed 3 LEDs, one for each appliance's place, and if an LED is on, for example, the
corresponding appliance would be on.

Another function we added in the IR Master is IR learning function. For example, using a real
IR remote controller, if you assign the button "2" as the command for the microwave, you aim
your remote toward the IR receiver of the IR Master so that it learns the IR command pattern for
the appliance. This pattern is stored in the memory, and later, when the microwave control is
needed, the stored pattern is used to transmit directly from IR Master (without using any IR
remote controller) to the IR Receive/Controller.

3. Hardware Description

IR Master Station: IR Master, implemented on a breadboard as pictured below, consists of
16F877 microcontroller operating at 20MHz, and IR transmitter/receiver. In addition to the
essential elements, it has several LEDs as indicators. Also, it has an IR LED to send out pulse IR
encoded message generated by an encoding circuit.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

=
1=]

o7

oe

L]

444
Fig. 102 Implementation of IR Master on breadboard
The circuit diagram of the IR Master is shown below.
LED ARRAY
RE7 [
2 RBE [y D
E RE _""'*‘1_ —- g
S RB4 |
2 RE a4
3 Rre v)
il L Q Sharp GP1U52X
RCO[IR) 1 i 40KHz IR Receiver
[IRL) RDS ! J_,
3
Serial Communication Cable (DB9 or USB)
RD2 von
e [IRLS) RO% e T
1
- L /?D—ﬁm—tnzmuuo IR Generator
i 1 LED
£ :E : o
Al A m* ”‘f 5 | 10| Td432 P—*Dsmllai-:r Output LED
4
‘ 2p— MHZ b L 220 NAND Dscillator ¥ IRLED
12 % 4 5 0
- i‘ i
[d
1 15 13|?4132j. m—LuzNaouu
g Vi
& MC145026
RTC
; 13|
CTe
8 LN
u
8
o u)",
100K

Fig. 103 IR Master circuit diagram

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 445

As you see, in addition to the PIC microcontroller and the IR receiver, there is MC145026 Serial
Encoder chip. It has a wide bandwidth range which is just low enough for IR communication
over a 40KHz carrier. This Serial Encoder is working with MC145027 Decoder chip, which is
used in the IR Receiver/Controller board. 40 kHz IR Generator generates a 40 kHz square wave
using a 74132 Quad NAND with a Schmitt trigger and a 40.0 KHz crystal. Two LEDs are used
as rectifier diodes as well as displays.

MC145026 (Decoder) and MC145027 (Encoder) pair are designed to be used as encoder/decoder
pairs in remote control applications.

PIN ASSIGNMENTS
MC145026 MC145027
ENCODER DECODER
Al 1w 16 I Vpop Al 1o 16 [l Vop
A2 (] 2 15 [I Doyt Azf] 2 5[] DB
a3l 3 4 [TE w3 14 1 o7
Ad Tl 4 13 1 Re A4 [4 13 (] D8
As[] 5 1211 Cre As (] 5 121 D8
AGDE [6 1 [] Rg Ryl 6 1T
ATDT O 7 10 {1 A9D9 Q7 10 I RyiCp
vss [8 9 [l AgiD8 ves [8 9 [oy,

Fig. 104 Pin Assignments for MC145026 and MC145027

The MC145026 encodes nine lines of information and serially sends this information upon
receipt of a transmit enable (TE) signal. The nine lines may be encoded with trinary data (low,
high, or open) or binary data (low or high). The words are transmitted twice per encoding
sequence to increase security.

The MC145027 decoder receives the serial stream and interprets five of the trinary digits as an
address code. Thus, 243 addresses are possible. If binary data is used at the encoder, 32
addresses are possible. The remaining serial information is interpreted as four bits of binary data.
The valid transmission (VT) output goes high on the MC145027 when two conditions are met.
First, two addresses must be consecutively received (in one encoding sequence) which both
match the local address. Second, the 4 bits of data must match the last valid data received. The
active VT indicates that the information at the Data output pins has been updated.

Details of the application of the encoder/decoder pair can be found in an application note from
On Semiconductor.

IR Receiver/Controller: IR Receiver/Controller is to control home appliances by the received
command of IR protocol. This board, similarly implemented on a separate breadboard, contains
IR receiver and receiver circuit, along with decoder to switch On/Off control of the appliances.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 446
The On/Off control of appliances is indicated by LED On/Off status. The IR
Receiver/Controller is pictured below, with 3 colored LEDs representing 3 appliances.
Fig. 105 Implementation of IR Receiver/Controller on breadboard
The schematic of the IR Receiver/Controller is shown below.
Charp GP1LUETE
= Jans L
4 bz Femobe Conbml Moduks
T
|"r 1 WC 145027
b F
s A3 5 I il
L - .".r.'||'_|'.r_ - .
i 1k | a. e . 1 A
' o 8 3
400
.L 5 23] 4 |
. i AN B '[Lem Appliance 1
I § (4=
o5 |
. T 15 LEDs Appliance 2
C = M Ty 14 o7 __ I - 1|
| N 4 = Appliance 3
LEDG Appliance
| |, 300 1 I ——g
— = § NT)
s | 1w LED4 Buzzer
——

Fig.106 Schematic of IR Receiver/Controller

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 447

Parts list is shown below for those who are seriously considering implementing this project.

Part Quantity Part Quantity
Sharp IR 40KHz Receiver 2 Motorola MC145026P 1
PIC16F877 Microcontroller Motorola MC145027P 1
20 MHz Crystal Maxim MAX233ACPE 1
PNP Transistors AlGaAs IR LED 1
Big Bulb LEDs 74HCOON Quad NAND 1
Small Bulb LEDs 74HC132 Quad NAND 1

RPINFPINOOOIN| |-

Diodes (LED) Resistors, Capacitors 20,7
40 KHZ Crystal Breadboards 2
5V Power Supply
Buzzer]

In addition to the PIC 16F877 assembly language programming for the boards, there is another
element of software: a windows programming using Visual Basic to connect a PC to the IR
Master station as the controller of the appliances. In all, the overall structure of the system
operation is as illustrated below.

PC RS-232 Chip 40 KHz Remote MC145027
Generator Control Module Decoder
Software N

PIC16F877 MC145026
Encoder

40 KHz Remote

Control Module

Remote
@ > Control

Fig. 107 Overall Structure of System Operation

Appliances | | Peripherals
TV, VCR Heats, Light, etc.

4. 16F877 Code Segments - General

PORT Set Up for 16F877 in the IR Master Board: As you see in the schematic diagram, 16F877
has numerous outputs: RCO, RD2, RD1, RDO for MC145026 Encoder, RD5 for IR reception,
and RD3 for IR transmission. In addition to these essential connections, 16F877 has additional 8
outputs to LEDs in PORTB. Therefore all PORTB pins are to be assigned as outputs. And
except RD5, all PORTD pins are also assigned as outputs. PORTD<5> must be declared as

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 448

input, in order to receive IR communication. Since only PORTC<0> is used to initiate
transmission of encoded IR, all PORTC pins except RCO are assigned as inputs. PORTC<0> is
designated as output.

banksel TRI SB

clrf TRI SB ; Make PORTB out put ports

nmovl w 0x20 ; Binary = 00100000

novwf TRI SD ; Make PORTD out put ports except the bit 5(IRL)
novl w OxFE ;Binary = 11111110

novwf TRI SC ; Make PORTC i nput ports except bit 0(Sendl R)
banksel PORTC

bsf PORTC, IR ;Turn off IR Transm ssion (IR=0) or PORTC<0>
clrf PORTD

bcf PORTD, |RLS ;| RLS=PORTD<3>

clrf PORTB ; Turn of f any LEDs

Serial Communication Initialization: For the baud rate, we keep our usual 19200 bps.
However, instead of low rate we choose to use high rate selection of the value for the SPBRG
(see Chapter 5 for details). Anyway, if we briefly review, when TXSTA<2>=0 (low rate
selection), the formula for the value of SPBRG, Nggg, IiS:

ry
— JW‘:

NER’E = -
64% B,

where, fosc is crystal oscillation frequency and B is a desired Baud rate.
If TXSTA<2>=1 (high rate selection), the formula for the value of SPBRG, Nggg, IS changed
to:
J-d‘

NER'E = ———1

16x8,
Therefore, with high rate selection with TXSTA<2> set, the value for Ngrg for 19200 bps for
20MHz crystal oscillation is:

I _ 20,000,000

Ngrs = -1=

1619200 16 x19200
Therefore the value for SPBRG is 0x40 which is the hexadecimal equivalent value of 64 in

decimal.
Other sequences are just routine one we finished in Chapter 5.

-1=64.104 - 64

banksel SPBRG

nmov| w 0x40

novwf SPBRG ;set baud rate 19200 with high rate
bsf TXSTA, BRGH ; Set for H gh Speed

bcf TXSTA, SYNC ;clear for Asynchronous Mde
bcf TXSTA, TX9 ;Clear for 8-bit

banksel RCSTA

bsf RCSTA, SPEN ;enabl e serial port

banksel TXSTA

bsf TXSTA, TXEN ;enabl e transm ssi on

banksel RCSTA

bsf RCSTA, CREN : Enabl e Recei ver

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

449

Checking the link between PIC and PC: Checking if there is serial communication link is

established between PC and 16F877 is simple. After 16F877 sends an initial code (like 0x09) to
the PC via the serial communication link, if 16F877 receives the same code from the PC, then it
is considered that communication link between two is established and running fine.

PCLoop
Cal |
nmov| w
novwf
Cal |

BTFSS
goto
bcf
bsf

Chkl n BTFSS
goto
bsf
novf
subl w
BTFSC
goto

Cont PCL
Cal |
got o

: TRANS subrouti ne

TRANS NOP
TRANS1
novf
Hol dT BTFSS
goto
nmovw
Ret urn

SHDELAY
I nit
OUTCODE
TRANS

RCSTA, CERR
Chkl n

RCSTA, CREN
RCSTA, CREN

PIRL, RCIF
Cont PCL
PORTB, 6
RCREG O

I nit
STATUS, Z
PROGRAM

;1 F not,

SHDELAY
PCLoop

QUTCODE, 0
PIRL, TXIF
Hol dT
TXREG

END of TRANS subrouti ne

; short del ay

;a code to be sent to PC

;buffer for the code INT

;Call TRANS Sub to send Init Code to PC

; Check for Rx overrun error

; 1f none then continue program
; by clearing CREN and
;resetting it

; Check if we received anything fromPC
;1f not then Continue PC Looping

; I ndi cates sonet hi ng has been received
;1f so, then check if its the Init code

;1f it is the Init code, then
; Start PROGRAM (nmain part)

then continue waiting for Init code

: Move contents of Wcode to OUTCODE

;1f TXIF is set (enpty TREGthen continue
; Move Wto Transmit

Main Part of the Code: The main portion of the code is, first, to receive control command sent

from PC via serial communication established, then, second, to decode the command and to act
accordingly. The commands from PC are generated by clicking the button generated in the

screen of the PC using Visual Basic code.

The command code sent to PIC from PC is stored | NCODE register in RAM area. There are
numerous function commands from PC (The command code inside INCODE is indicated inside

the parentheses:

(a) PIC ready inquiry: PC checks if PIC is ready for communication (0x10)

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

(b) Termination of the control session (0x11)
(c) Turn Off Appliance 3 (0x13)

(d) Turn Off Appliance 2 (0x14)

(e) Turn Off Appliance 1 (0x15)

(f) Turn On Appliance 3 (0x16)

(9) Turn on Appliance 2 (0x17)

(h) Turn on Appliance 1 (0x18)

(i) Learn IR (0x19)

() Send IR (0x1A)

HEEEB

Check Connections...

Fig. 108(a) Buttons generated using Fig. 108(b) Visual Basic code fo
Visual Basic code program on PC screen

r Hyperterminal

450

So when PROGRAM is executed, the content sent from PC is first compared with the 0x10 for
readiness of PIC. Once PIC is ready, then reply is made from PIC to PC. And the next PC
command is then subtracted by 0x10 for easier comparison of the commands. Then, the content
inside the | NCODE would be the original number minus 0x10. In other words, the code for Turn
Off 2 would be now 0x03 inside the | NCODE. If we decrease it by 1, and check the content

every time we check it, we can find the command sent from the PC:

PROGRAM
Pol | Rx
BTFSS RCSTA, CERR ; Check for Rx overrun error.
happen.
goto RxCl ear ; 1f none then continue program
bcf RCSTA, CREN ; by clearing CREN and
bsf RCSTA, CREN ;resetting it
RxCl ear
BTFSS PIRL, RCF ; Poll Rx for code
got o Pol | Rx ;
Get Code
novf RCREG, 0 ;1f a code cones through, determ ne the code.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

novwf | NCODE
nmovl w Ready
subwf I NCODE
BTFSC STATUS, Z
Cal | REPLY
movf I NCODE
BTFSC STATUS, Z
goto Pol | Rx

t he Ready Code.

; Now ready check is over,
decf I NCODE ;s User
BTFSC STATUS, Z
goto EndPr g
decf | NCODE
BTFSC STATUS, Z ; Thi's
got o Pol | Rx
decf | NCODE ; Turn
BTFSC STATUS, Z
goto COFF3
decf | NCCDE ; Turn
BTFSC STATUS, Z
goto OFF2
decf I NCODE ; Turn
BTFSC STATUS, Z
goto FF1
decf I NCODE ; Turn
BTFSC STATUS, Z
goto ON3
decf | NCODE ; Turn
BTFSC STATUS, Z
goto ON2
decf | NCODE ; Turn
BTFSC STATUS, Z
goto ON1
decf | NCCDE
BTFSC STATUS, Z
goto LEARN
decf | NCODE ; Send
BTFSC STATUS, Z
goto SendLI R
got o EndPr g

; PC program has control

;1f none of these codes were right,

451

; Codes are in order by value

;1s it the PIC Ready code? (ready = 0x10)
; To determi ne, subtract Ready from | NCODE
; [| NCODE] =[| NCODE] - [r eady]

;and check the Zero flag

;1f so then REPLY to PC and continue Polling Rx

: The second BitCheck was added to break
;conparisons if the | NCODE was actual ly

and COVMAND check

requesting to end of the session?

;1f so then end the program (botton)

;1s user asking to Check IR Link?

is option is currently not avail abl e.

of f Light 3

of f Light 2

of f Light 1

on Light 3

on Light 2

on Light 1

;Learn an | R CODE

| earned | R CODE

t hen not her

over the COM port. RESET PIC

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 452

By the way the subroutine REPLY is for PIC to reply the READY code received from PC.

ySuUbroutine REPLY-----m-om oo oo oo oo
; Replies to the READY code sent fromPC. |f the PIC does not reply with the

; READY code within 750nms, the Software will ask you to check connecti ons.
REPLY rmovl w READY
novwf QUTCODE ; Prepare to transnmit READY code to PC
cal | TRANS ; OUTCODE hol ds whatever to be sent to PC
return

Appliance On/Off Control: To describe this part, we have to look at the encoder/decoder chip
more carefully. First, the decoder is the exact mirror image of the encoder. In other words, if
the encoder input is, for example, 000 at the D8, D7, and D6 inputs, then the decoder's outputs
D8, D7, and D6 are 000. This allows us to easily control any device attached at the outputs of
decoder, by setting/clearing the inputs of the encoder. However, there is another thing to
consider in the encoder/decoder. The inputs to the encoder are not just O or 1: it has hi-Z state
(more like a disconnected state) if not specified. In other words, an input to D8 of the encoder
can be 0, 1, or hi-Z. Therefore, if | choose the three inputs D8, D7, and D6 are our three inputs
to the encoder, and if | set D8=0, then inputs to D7 and D6 are interpreted as hi-Z. And the
outputs at the decoder will have, D8=0, and D7& D6 would be nothing with disconnection.

In the code of the project, this is exactly what happens to control the three appliances. Only thee
inputs (D8, D7, and D6) are used for the control, and the thee pins of PORTD are connected as
follows: D8 to PORTD<2>, D7 to PORTD<1>, and D6 to PORTD<0>. At the decoder side, D8
- D6 are used and connected to three LEDs, mimicking three appliances, respectively. The
control table is shown below. Blank spaces, unspecified, are hi-Z logic.

D8 D7 D6 Appliance Control
PORTD<2> PORTD<1> PORTD<1> Logic
0 Turn off 1
0 Turn off 2
0 Turn off 1
1 Turnon 3
1 Turnon 2
1 Turnonl

Therefore, coding of the appliance control consists of two parts: control the logic for the encoder
and IR signal transmission based of the select logic. The following code part shows how easy
the control is.

OFF3 bcf PORTD, 2 ; What ever appears at PORTD
goto SEND IR

OFF2 Dbcf PORTD, 1
goto SEND IR

OFF1 bcf PORTD, O
goto SEND IR

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 453

ON3 bsf PORTD, 2
goto SEND IR

OoN2 bsf PORTD, 1
goto SEND IR

ON1 bsf PORTD, O
goto SEND IR

SEND I R bcf PORTC, IR
call SHDELAY : Send short | R burst
call SHDELAY
Cal | REPLY :Let the PC know that the PIC recei ved the code.
bsf PORTC, IR
goto Poll Rx ;go back to polling for incom ng code

5. 16F877 Source Code Details

The whole code is listed here. As | mentioned above, | did not change the code made by Scotty
Mazyck except a few MPLAB directives. The .INC file in the second line includes all
declaration of file registers and bit information, and an .INC file for 16F877A is included at the
end of the chapter. 16F877A.INC can replace 16F877.INC.

list p = Pl CL6F877
#i ncl ude <P16F877.1NC

e Codes Used by PIC and Programt---------------mmmmmmmm oo o
These characters not available on a standard keyboard. This prevents
;uni ntended interfaci ng between a PC user and the Di gi House.

Init EQU 0x09 ; Used on power-up to initialize PIC

Ready EQU 0x10 ; Used to check Serial Link and to confirmready to PC
EndP EQU 0x11 ; Ends Program

IR OK EQU 0x12 ; Not Used. Checks IR Link between PIC and ot her
Board.

OFF 3 EQU 0x13 ; Turn Of Light 3

OFF_ 2 EQU 0x14 ; Turn Of Light 2

OFF_ 1 EQU 0x15 ; Turn Of Light 1

ON 3 EQU 0x16 ; Turn on Light 3

ON 2 EQU 0x17 ; Turn on Light 2

ON 1 EQU 0x18 ; Turn on Light 1

Learnl R EQU 0x19 ;Learn a | R Code

Sendl R EQU Ox1A ; Sends a | earned | R Code

| R_BAD EQU 0x1B ;Tells the PCthat It Couldn't Learn IR CODE

| R Wi t EQU OX1C ;Tells PCto wait while the PICis learning IR
Code

L CONSTANTS USED I N I R SENDI NG, RECEI VING, AND SAMPLING -----------
IR EQU O ; PORTC bit used to enable IR Transm ssion

| RL EQU 5 ; PORTD bit used for LEARNI NG | R CODE

IRLS EQU 3 ; PORTD bit used to Send Learned | R CODE

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 454

MSB EQU 7 ; Stores voltage level of incomng IR pul se <See
LEARN>
CBLOCK 0x20 ; RAM AREA for USE at address 20h
; Vari abl es sed for RS-232 Comuni cation
StrtReg ;20 - Used for transmitting multiple register
EndReg ;21
; Vari abl es used for program PI C conmuni cati on
| NCODE ;22 - The code entered fromthe PCto PIC
QUTCODE ;23 - The code sent fromthe PICto PC
; Vari abl es used for Loops and Del ays
first ;24 - Used for delay |oops
second ; 25
third ; 26
Del Val ;27 - Delay Value for Programmbl e Del ay and

SendLI R
Tenp_Loop ;28 - Tenporary Loop variabl e

Num Dbl _O ;29 - Counts doubl e-overflows of Tinmer0 nodul e
; A double overflow is 128 cycles of Tinmer0O overfl ow
; Determ nes when to quit |earning IR Code.
; <See LEARN>

; Vari abl es used for Learning and Sending an | R CODE
IR Learned ;2A - Tells an IR Code been | earned (Boolean: 0 or 1)
I R Reg_Max ;2B - Maxi mum nunmber of recording spaces is 80 (0x50)
| R_ Reg_Count ;2C - Counts registers that recorded IR Pul se
Lengt hs
I R Reg_Start ;2D - First register for Recording IR Pul se
Length
;To tranmit learned IR code, a loop length = 80 (0x50)

ENDC

ORG 0x0000
GOTO START
ORG 0x0005
START
banksel TRI SB
clrf TRISB ; Make PORTB out put ports except bit<0>
nmovl w 0x20 ; Binary = 00100000
movwf TRI SD ; Make PORTD out put ports except the bit 5(IRL)
novl w OxFE ;Binary = 11111110
movwf TRI SC ; Make PORTC i nput ports except bit 0 used for Sendl R
banksel PORTC

bsf PORTC, IR ;Turn off IR Transni ssion

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

clrf
bcf
clrf

PORTD
PORTD,
PORTB

I RLS

455

; Turn of f any LEDs

: CONFI GURE SERI AL PORT- - - = = = = = = == = === === o m o e e o e oo oo

banksel

nmov| w
nmovw
bsf
bcf
bcf

banksel

bsf

banksel

bsf

banksel

bsf

bcf

SPBRG
0x40
SPBRG
TXSTA, BRGH
TXSTA, SYNC
TXSTA, TX9

RCSTA
RCSTA, SPEN

TXSTA
TXSTA, TXEN

RCSTA
RCSTA, CREN

IR Learned, O

;set baud rate

; Set for H gh Speed

;clear for Asynchronous Mde
;Clear for 8-bit

;enabl e serial port

;enabl e transm ssi on

: Enabl e Recei ver

:On reset, there is no code stored in PIC

e CHECK THE PC LI NK- = = - - = = = = & & m s s o m e e ettt e e o iee e

lnitial
;until

ChkPC

banksel

clrf

PCLoop
bcf
Cal |

nmovl w
nmovwf
Cal |

BTFSS
goto
bsf
bcf
bsf

Chkl n BTFSS
got o

bsf

novf

Aut o Detection Subroutine.
the PC responds with the Init code.

PORTB
PORTB

bsf
PORTB, 5
SHDELAY

I nit
OUTCODE
TRANS

RCSTA, CERR
Chkl n

PORTB, 5
RCSTA, CREN
RCSTA, CREN

PIRL, RCIF
Cont PCL
PORTB, 6

RCREG, 0

PORTB,

The PI C continuously sends the Init code

7 ; LED di splay while waiting for PCto send codes

;VWiting for PCto reply to send the Init Code
;1nit code for Xmission to PC

;Call TRANS Sub to send Init Code to PC

; Check for Rx overrun error.

; 1f none then continue program
;1f so then clear it

; by clearing CREN and
;resetting it

; Check if we have received anything fromPC
;1f not then Continue PC Looping
; I ndi cates sonet hi ng has been received

:1f so, then check to see if its the Init code

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 456

sublw Init
BTFSC STATUS, Z ;If it is the Init code, then
goto PROGRAM ; Start PROGRAM
;1 F not, then continue waiting for Init code

Cont PCL bcf PORTB, 7
Call SHDELAY
bcf PORTB, 6
goto PCLoop

yem e PROGRAM PROCESSES CODES, RETURNS READY CODE TO PC, ENABLES IR
TRANSM SSI ON

PROGRAM bsf PORTB, 7
bcf PORTB, 6 ; Set LEDs for display purposes. LED7 should hold on
Pol | Rx BTFSS RCSTA, OERR ; Check for Rx overrun error. It could happen.
goto Rxd ear ; 1f none then continue program
bsf PORTB, 5 ;1f so then clear it

bcf RCSTA, CREN ; by clearing CREN and
bsf RCSTA, CREN ;resetting it

Rxdl ear BTFSS PIRL, RCIF ;Poll Rx for code
goto Poll Rx ;
CGet Code novf RCREG O ;1f a code cones through, determ ne the code.
movwf | NCODE ; Codes are in order by value
novl w Ready ;1s it the PIC Ready code?
subwf | NCODE, 1 ; To determi ne, subtract Ready from | NCODE
BTFSC STATUS, Z ;and check the Zero flag

Call REPLY ;1f so then REPLY to PC and continue Polling Rx

novf | NCODE, 1

BTFSC STATUS, Z ; The second BitCheck was added to break the

goto Poll Rx ;conparisons if the | NCODE was actually the
Ready Code.

decf INCODE, 1 ;1s User requesting to end Di gi House session?

BTFSC STATUS, Z

goto EndPrg ;1f so then end the program (botton)

decf INCODE, 1 ;1s user asking to Check IR Link?

BTFSC STATUS, Z ;This is option is currently not avail abl e.

goto Poll Rx

decf INCODE, 1 ; Turn of f Light 3
BTFSC STATUS, Z
goto OFF3

decf INCODE, 1 ; Turn of f Light 2
BTFSC STATUS, Z
goto OFF2

decf INCODE, 1 ; Turn of f Light 1

BTFSC STATUS, Z
goto OFF1

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

decf INCODE, 1 ; Turn on Light 3
BTFSC STATUS, Z
goto ON3

decf INCODE, 1 ; Turn on Light 2
BTFSC STATUS, Z
goto ON2

decf INCODE, 1 ; Turn on Light 1
BTFSC STATUS, Z
goto ON1

decf | NCODE, 1 ;Learn an | R CODE
BTFSC STATUS, Z
goto LEARN

decf | NCODE,
BTFSC STATUS,
goto SendLIR

:Send | earned | R CODE

N

goto EndPrg ; 1f none of these codes were right, then
anot her
; PC program has control over the COM port. RESET PI
L SUB ROUTI NES- - - - - - - - - s oo m oo e o oo o
R L TRANS- - - - - - o mm o e e o e i eaao o

; Transmts Register Contents to PC. whenever a subroutine calls TRANS, it
;places a value in the Wregister.

TRANS NOP
TRANS1 nmovf OUTCODE, O ; Move contents of Wcode to OUTCODE.
Hol dT BTFSS PIRL, TX F
goto HoldT ;1f TXIF is set (enpty TREG then continue
movwt TXREG :Move Wto Transnit
Ret urn
L B o I I

; Replies to the READY code sent fromPC. |If the PIC does not reply with the
READY code
;within 750ns, the Software will ask you to check connections.

REPLY novl w READY
nmovwf OUTCODE ;Prepare to transnmit READY code to PC
call TRANS
return

Peeeee- SET AND SEND | Re == - -« = = - x @ o m s o m e et i

457

C

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 458

; Set/ Cl ear the PORTD bit that corresponds to the correct LED, then clear
PORTC, IR to send

OFF3 bcf PORTD, 2 ; PORTD conencts to IR encoder. Watever appears at
PORTD

bcf PORTB, 2 ;is what's transmitted. PORTB is used as | ocal
di spl ay.

goto SEND IR

OFF2 Dbcf PORTD, 1
bcf PORTB, 1
goto SEND IR

OFF1 bcf PORTD, O
bcf PORTB, 0
goto SEND IR

ON3 bsf PORTD, 2
bsf PORTB, 2
goto SEND IR

ON2 bsf PORTD, 1
bsf PORTB, 1
goto SEND IR

ON1 bsf PORTD, O
bsf PORTB, O
goto SEND IR

SEND I R bcf PORTC, IR
call SHDELAY : Send short IR burst
call SHDELAY
Cal | REPLY ;Let the PC know that the PIC recei ved the code.
bsf PORTC, IR
goto Poll Rx ;go back to polling for incom ng code
R [e e P

; This routi ne RECORDS by counting the nunber of tines TMRO<7> overruns for
each vol tage

;level L,H The values are stored in order starting at RAM area 0x2D. Wth a
2:1

;prescal er, we can sanple pulse lengths in 52.2us intervals (19.9KHz) by

pol i ng TMRO<7>.

; Each register stores the voltage level in the MSB(7) and the nunber of
TMRO<7> overfl ows

;in bits<6: 0> The maxi mum val ue storable in each register is 52.2us x 127 =
6. 5ns

;1f a High pulse lasts nmore than 6ns, | call it a Double Overflow therefore
t he next

;register will have the sane MSB as the previous register and continues
sanpl i ng.

; The maxi mum number of registers allowable is 80 (0x50). The maxi numti ne
storable is

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 459

;6.5m8/reg x 80reg = 520ns, but it |essens depending on the nunber of pulses.

; PORTB<4> di spl ays the sanpl ed denodul ated | R pul ses.

LEARN Call Reply ;Let PC know we received Learnl R Code
nmovl w | R_ Wi t ; Tell the PCto wait while PIC sanples IR
Code
movwf OUTCODE
Call TRANS
bsf PORTB, 3 ; Show Ready Li ght
novl w 0x50 ;Initiation
movwf | R_Reg_Max ; Set maxi mum Recording tinme to 80 Registers
clrf IR Reg_Start ; Empty the starting register
novliw | R Reg_Start
novwf FSR ; Make I NDF point to starting register
clrf IR _Reg_Count
clrf TMRO ; Reset the TinerO Register
WAIT IR novl w OxAA ; This is a delay Loop. In the |oop we
novwf first ;are waiting for bit PORTD<IRL> to go
| ow.
WIR L nmovwf second ; PORTD<I RL> i s where the
Renot e Recei ver
decfsz first ;is connected. <See constants>
goto IR Nl
goto EndWRL ; <See EndW RL bel ow>
IR nl nmovwf third
decfsz second
goto IR N2
goto WIRL
| R_n2 BTFSS PORTD, | RL ; Check if the user started sending signal
goto RECORD ;1f so then break this | oop and RECORD.. .
decfsz third ;1f not, keep waiting.
goto IR N2
goto IR N1 ; End of Waiting for IR Loop
EndW RL novl w | R_BAD ;1f the Loop finishes before a | ow val ue
nmovwf OUTCODE ;is detected, then send | R BAD CODE to PC.
Call TRANS ;Return to Waiting For Next Code.
bcf PORTB, 3 ; Turn of f LED
bcf IR Learned, O ; Remenber that we didn't | earned an | R Code.
goto Poll Rx ; Go back and wait for next code.
L RECORD- - - - - - - = - - m o m oo o m o o o oo
RECORD
banksel OPTION REG ;lnitiate Tiner0
novl w 0x60 ; Binary = (01100000).
andwf OPTI ON_REG ; Prescaler = 2:1, Rising Edge
bcf OPTION_ REG TOCS ;sStart TimerO
banksel TMRO
clrf TWMRO

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 460

goto LowSanp ;1t's not necessary to Poll TMRO on first
sanpl e.
Avai | bl decfsz | R_Reg_Max

goto NewReg ;1f there are nore avail able registers
use them

goto | RGOOD ;1f not, then we are finished Recording
NewReg incf FSR ;Make a new blank register if double overflows occur.

clrf | NDF ; Let the recordi ng subroutines determ ne what

i ncf | R _Reg_Count ;to do with it. Keep count of registers
used.
Pol I _TO BTFSS TMRO, 7 ;Pol 1 TMRO. After 128

i ncrement s(52. 2us) bit<7> goes Hi.
goto Poll _TO
clrf TWMRO ;I mediately clear TMRO register
bcf | NTCON, TOIF

BTFSC PORTD, | RL ; Check Status of IRL and the | NDF<MSB> bits.
goto IRL_Hi ; Remenber, MSB stores the voltage | evel of the
goto I|RL_Low ;current pul se after sanpling has begun.
| RL_Low BTFSC | NDF, MSB
goto LowRec ;If IRL is Low and MSB is High, start new Low recordi ng
goto LowSanp ;1f IRL is Low and MSB is Low, continue
sanpling Low
| RL_Hi BTFSC | NDF, MSB
goto Hi Samp ;1f IRL is H and MSB is Hi, continue sanpling Hi
;goto HRec ;If IRLis H and MSB is Low, start new Hi recording

;- - - - - - - - - - - - - This is where actual recording takes place. - - -

H Rec nmovf [INDF, O ;1f this register is already enpty, there is no need
BTFSC STATUS, Z ;to start a newone. It only needs its MSB
changed
goto SetHi ;to H . But if it's not new. ..
incf FSR ; Move to and prepare a clean register for H pul se
clrf | NDF

i ncf |1 R _Reg_Count
decf | R _Reg_Max

BTFSC STATUS, Z ; Check if we have any nore avail abl e registers
goto | RGOOD ;1f not then we're finished recording.
Set Hi bsf I NDF, MSB ;Set MSB. IF IRL pul se remains high after next TMRO
H Sanp bcf PORTB, 4 ;overflow, then continue sanpling with register.
i ncf | NDF
novf I NDF, O ;Check if this register has reached its capacity.
subl w OxFF p(Ixxxxxxx - 11111111)
BTFSS STATUS, Z
goto Poll _TO ; No, keep filling it

goto Avail bl ; Yes, Check if we have any nore avail abl e registers.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 461

LowRec novf I NDF, O ;1f this register is enpty, there is no need
BTFSC STATUS, Z ;to start a new one. There is also no need to change
goto LowSanmp ;its MSB because its already Lo. But, if it's not new. ..

incf FSR ; Move to and prepare a clean register for Low
pul se.

clrf I NDF

i ncf |1 R _Reg_Count ; (LowRec not necessary on first sanple)

decf | R _Reg_Max

BTFSC STATUS, Z ; Check if we have any nore avail abl e registers

goto | RGOOD ;1f not then we're finished recording.
Set Lo bcf | NDF, NMSB ;Clear MSB. |F IRL pul se remains |ow after next
TMRO
LowSanp bsf PORTB, 4 ;overflow, then continue sanpling with
this register.

i ncf | NDF

nmovf I NDF, O ;Check if this register has reached its
capacity.

subl w Ox7F ; (OXxxxxxx - 01111111)

BTFSS STATUS, Z

goto Poll _TO ; No, keep filling it

goto Avail bl ; Yes, Check if we have any nore avail abl e
registers.

; When finished, we | et the Program Know.
| RGOOD bcf | NTCON, TOIF
banksel OPTI ON_REG ; When all 80 Register are filled...
bsf OPTI ON_REG, TOCS ;Stop Tinmer0
banksel PORTB
bcf PORTB, 4 ; Turn of f LEDs
bcf PORTB, 3

bsf IR Learned, O ; Remenber that we | earned an | R Code.
nmovl w | R_OK
nmovwf OUTCODE ;then send IR OK CODE to PC
Call TRANS ;Return to Waiting For Next Code.

j¥rxxxkkxkxx| ngert Testing Code Here

ckkkhkkhkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkkhkhkkkk
’

Fi ni sh bsf PORTB, 7
goto Poll Rx

L SeNALl R - - - - - s o oo e i
; Send a Learned IR Code

; The SendLIR al gorithmis structured around Del Val, a tenporary varaibl e that
stores

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

;only the timng informati on of each IR Register. The MSB of

pul se val ue
;whether it's Lo or Hi.
registers.

SendLI R
goto
; goto

SndLoop
NoCode
NoCode call REPLY
novl w | R_BAD
movwf OUTCODE

call Trans
goto Poll Rx
SndLoop movliw | R_Reg_Start
movwf FSR
novf | NDF, O
novwf Del Val

novl w 0x50
movwf Tenp_Loop

banksel OPTI ON_REG
novl w 0x60
andwf OPTI ON_REG

bcf OPTI ON_REG, TOCS

banksel TMRO

clrf TWMRO
Pl slnit bcf PORTD, |RLS
Cycl _TO BTFSS TMRO, 7

goto Cycl _TO

clrf TMRO

bcf | NTCON, TOIF

BTFSS | NDF, MSB

bsf PORTD, |RLS

BTFSC | NDF, MSB

bcf PORTD, |RLS

decfsz Del Val

goto Cycl _TO

;goto SndNexR

SndNexR incf FSR

movf I NDF, O

movwf Del Val

bcf Del Val , MSB

decfsz Tenp_Loop

goto Cycl _TO

;goto NoMor eR

NoMor eR call REPLY

BTFSC | R _Lear ned,

462

INDF tells the

This way a TMRO | oop can be created w thout change to

0 ;Check if PIC has |learned a | R code.
; Yes. Decode IR Registers to transmt it.
; No. ..

; REPLY to the Program

; Let the Program know that PIC has no code.
;1t will reset the button panel.

;Wait for next code.

;Point to the 1st Register w IR information
; Del Val tenporarily stores TMRO | oop-counts
;80 that actual registers renmai n unchanged.

; Set Loop for 80 IR registers

;Initiate Tiner0
; Binary = (01100000).
; Prescaler = 2:1, Rising Edge
;Start Tinmer0

;lnitiate first IR pul se.
; Cycle TMRO for 128 increments.

;I mediately clear TMRO register

: Check the MSB of the current
;Lo - Send Hi

| R Regi ster
pul se to PORTD<I RLS>

;H - Send Lo pul se to PORDT<|I RLS>

;Go to the next register
; Tenporarily store its value in Del Val
;Clear DelVal's MSB -- we don't need it.

; Have we cycled all
:No...Continue
pYes. ..

80 registers.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 463

bcf
bcf
got o

PORTD, |RLS ; Sonetimes pul se nust be turned off.
PORTB, 3
Pol | Rx

e SHDEL AY- - - - - - - oo oo s m e oo e e e
; Loop generates a short del ay

SHDELAY
nmovwf
DLoop
decfsz
goto
goto
nest 1
decfsz
goto
goto

goto
goto

; Progr amuabl

nmovl w 0x40
first

nmovwf second
first

nest 1

t heend

nmovwf third
second

nest 2

DLoop

decfsz third

nest 2

nest 1

RETURN

e Del ay.

PDELAY nmovf DelVal, O ; Move the Delay Value to the WRegister.
novwf first
PLoop novwf second
decf sz first
goto Pnestl
goto Endlt
Pnest 1 novwf third
decfsz second
goto Pnest2
goto PLoop
Pnest 2 decf sz third
goto Pnest2
goto Pnestl
Endl t RETURN
jemmm - S pTe | S e e T

; End Prgramw LED Display, and go back to waiting for the Init Code (ChkPC)

EndPr g
clrf
bsf
nmov!| w
nmovw

Di spl ay
rilf
decfsz

bcf STATUS, C

PORTB ; LED Di spl ay
PORTB, 0

0x6

Tenp_Loop

Call SHDELAY
PORTB
Tenp_Loop

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 464

goto Display
goto ChkPC
END

6. Visual Basic Code for Windows Programming of Serial Communication

The following complete code is for making a serial communication windows programming
instead of using Hyperterminal program.

o -
Fig. 109 Visual Basic code for serial communication windows programming on PC screen

Vi sual Basic Form Code: 2 Tinmers (Tinmerl, Timer2); 1 Label (Label?2), 1 Shape
(Circle), 5-Button Array (Send (1 to 5)), Frame containing Buttons (Franel)

Option Explicit ' Thi s expression hel ps prevent coding errors.
Const Init = &H9 ' These codes are sent to the PIC fromthe PC
Const Ready = &H10 "They are the same values as in the PIC s code.
Const End_Prg = &H11

Const IR OK = &H12 "The Init code is used on startup

Const OFF_3 = &H13 ' The Ready code is used to check the serial |ink
Const OFF_2 = &H14 "prior to each transnmission. If the PIC received it,
Const OFF_1 = &H15 "then it will REPLY with the Ready code.

Const ON 3 = &H16 "Using a timer, we can detect whether the PIC
Const ON 2 = &H17 "actually received the Ready code or not.

Const ON_1 = &H18

Const LearnlR = &H19 ' Code used to Learn a IR Code

Const Sendl R = &H1A 'Sends a | earned IR Code

Const IR BAD = &H1B "PIC was not able to learn IR code

Const IR Wit = &HIC "Wait while PIC learns IR code

Di m SEND_ CCDE ' These variables are used to store the

Di m REC_CODE "ASCI| codes that are being sent and received.

Di m PI C_Ready As Bool ean "PIC Ready is used for link testing
pur poses.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 465

"Whenever PIC responds with the Ready or Init code, this value is set
True.

Dim IR Learned As Bool ean "Program knows if an IR code was Lear ned.
Dim btn_Index As Integer "Tells which button is clicked
Dimbtn_State(1l To 5) As Bool ean '"The Current State of each button
Dimbtn_PrevColor(1 To 5) '"Stores the previous color of the button
pressed

Dimbtn_Color(1 To 5)

Const btn_Yell ow = &HFFFF&
Const btn_Bl ue = &HFF0000
Const btn_Red = &HFF&

Private Sub C OnConmm()
'The COW control is the heart of this project on the PC side.
"It handles all events that take place during serial operation.

Di m Comm Event As | nteger 'Know t he event that is taking place.
Comm Event = C. CommEvent

Const Send _Event =1
Const Rec_Event = 2

Sel ect Case Comm Event
Case Rec_Event
REC CODE = Asc(C. | nput)
Sel ect Case REC CODE
Case Init
"check to see if PIC has already been initiated
"if not then initiate it. If it has, then the Init
'is being sent because the PIC has been reset
manual |y
"therefore causing it to start Init sending again.
"Determning the state of PIC Ready keeps the system
from

endl essly restarting itself and | ocking up the PC

If PIC Ready = True Then
Pl C Ready = Fal se

El self PIC Ready = Fal se Then
C.Qutput = Chr(lnit)
Pl C_Ready = True

End I f

"enabl e button controls
Fr amel. Enabl ed Tr ue
Ti mer 1. Enabl ed Fal se
Label 2. Capti on "Ready..."
Circlel. Visible = Fal se

Case Ready
'"The PIC REPLYs with the Ready code after each Tx.
"This is used to ensure that serial link is still
good.
"The tiner will disable the buttons if the Ready code

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

466

"is not received fromthe PIC within 500ns.

Ti mer 1. Enabl ed = Fal se
Framel. Enabl ed = True
Label 2. Capti on = "Ready..."

Circlel. Visible = Fal se
Pl C Ready = True

"Controlling the Buttons' Function and Col or
'The state of the buttons change only if the
' Ready code was received after the button was presed.

If (0 < btn_Index) And (btn_Index < 4) Then
If btn_State(btn_Index) = False Then

Send(bt n_I ndex) . BackCol or =

El se: Send(btn_I ndex) . BackCol or

End If

'Toggl e the button state and cl ear

bt n_Yel | ow
bt n_Bl ue

btn_State(btn_lI ndex) = Not btn_State(btn_Index)

End If
btn_ Index = 0

Case IR Wit

"The PICis telling the Programto wait while it
‘"l earns an IR code. The program halts for 20 seconds
"waiting on PIC. The PIC requires |less than 20

seconds.
Ti ner 2. Enabl ed
Fr amel. Enabl ed
Label 2. Capti on
Circlel.Visible = True

True
Fal se

Case | R_BAD
DimerrPronmpt As String
DmerrTitle As String
Di m Response

"Learni ng your code..."

errPronpt = "Digihouse did not read renpte control"

errTitle = "Di gi House"
Beep

Response = MsgBox(errPronpt, vblnformation,

Ti mer 2. Enabl ed = Fal se
Franel. Enabl ed = True
Send(5) . Enabl ed = Fal se
Send(5) . BackCol or = btn_Bl ue
Label 2. Capti on = "Ready..."
Crclel. Visible = Fal se

Case IR K
Ti mer 2. Enabl ed = Fal se
Framel. Enabl ed = True

Send(5) . Enabl ed = True
Send(5) . BackCol or = btn_Yel | ow
Label 2. Capti on = "Ready..."
Circlel.Visible = Fal se

Response = MsgBox("Learned Code", ,

End Sel ect

errTitle)

"Di gi House")

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

"Text2 = Text2 & REC_CODE

" Text 1. Text = Textl. Text & Comm Event

Case Send_Event

" Text 1. Text = Textl. Text & Comm Event

End Sel ect

End Sub

Private Sub Form Load()
On Error GoTo CheckError

If C PortQpen = Fal se Then C. Port Open = True
C. Qut put = Chr (Ready)
Exit Sub
CheckError:
DimerrPronmpt As String
DmerrTitle As String
Di m Response
errPronmpt = "Another Programis already using the Serial

errTitle = "Di gi House"

Beep
Response = MsgBox(errPronpt, vblnformation, errTitle)
Unl oad Me
End Sub
Private Sub Form Unl oad(Cancel As I|nteger)
On Error GoTo CheckError
C. Qut put = Chr(End_Prg)
C. Port Open = Fal se
CheckError:
Exit Sub
End Sub
Private Sub Label 2_Cick()
If PIC Ready = Fal se Then C. Qutput = Chr(Ready)

End Sub

Private Sub Send_dick(lIndex As Integer)
' Renenber which button was clicked
bt n_I ndex = I ndex

'Determ ne whether to turn light on or off

Sel ect Case | ndex
Case 1

If btn_State(lndex) = False Then

SEND_CODE = Chr (ON_1)

El se: SEND _CODE = Chr (OFF_1)

End If

Case 2

467

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

If btn_State(lndex) = False Then
SEND_CODE = Chr (ON_2)
El se: SEND_CODE = Chr (OFF_2)

End | f

Case 3

If btn_State(lndex) = False Then
SEND_CODE = Chr (ON_3)
El se: SEND_CODE = Chr (OFF_3)

End If
Case 4
SEND _CODE = Chr(Learnl R)
Case 5
SEND_CODE = Chr (Sendl R)
End Sel ect
Ti mer 1. Enabl ed = True
Franel. Enabl ed = Fal se

'Send the code the COW obj ect.
C. Qut put = SEND_CODE
"After the COW object sends the code to the PIC, it will wait
"for the PICto reply with the Ready code. If there is no response
‘fromPIC, then the state of the buttons remain unchanged.
End Sub

Private Sub Send_ MouseDown(|l ndex As Integer, Button As Integer, Shift As
Integer, X As Single, Y As Single)

If Button = 1 Then
btn_PrevCol or (1 ndex) = Send(I| ndex) . BackCol or
Send(| ndex) . BackCol or = btn_Red
End I f
End Sub

Private Sub Send_ MouseUp(l ndex As Integer, Button As Integer, Shift As
Integer, X As Single, Y As Single)

If Button = 1 Then Send(I ndex). BackCol or = btn_PrevCol or (I ndex)
End Sub

Private Sub Textl1l Dbl Cick()
C. Port Open = True
End Sub

Private Sub Text2_ Dbl Cick()
C. Port Open = Fal se
End Sub

Private Sub Tinmerl1l_Tiner()
"If a Ready signal is not sent wthin 500nms, then
"the the timer conpletes its cycle. It clears all present val ues
"as well as disables the buttons, and flags a nessage
Pl C Ready = Fal se
btn_ Index = 0

Franel. Enabl ed = Fal se

Circlel.Visible = Not Circlel.Visible "blink the Circle

468

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 469

Label 2. Capti on = "Check Connections..." 'flag a warni ng nessage
End Sub

Private Sub Timer2_Tiner()
"If the PIC doesn't learn IR Code within 20 sec, then
"the program assunes that it |ost connection. It disables
"itself and enables the Reply error tiner, Timerl.
Ti mer 2. Enabl ed = Fal se

DimerrPronpt As String
DmerrTitle As String
Di m Response

errPronpt = "Digi House | ost connection Systent
errTitle = "Di gi House"
Beep

Response = MsgBox(errPronpt, vbinformation, errTitle)
Ti mer 1. Enabl ed = True
End Sub

7. 17TF877A.INC file

LI ST
; PL6F877A.INC Standard Header File, Version 1.00 M crochi p Technol ogy,
I nc.

NOLI ST

; This header file defines configurations, registers, and other useful bits
of

; information for the PICL6F877A microcontroller. These nanmes are taken to
mat ch

; the data sheets as closely as possible.

; Note that the processor nust be selected before this file is
; included. The processor may be selected the follow ng ways:

; 1. Conmand |ine switch:

; C:\ MPASM MYFI LE. ASM / PI C16F877A

; 2. LIST directive in the source file

; LIST P=PICl6F877A

; 3. Processor Type entry in the MPASM full-screen interface

; Rev: Dat e: Reason
;1.01 09/13/01 Added the PIR2 bit CMF and the PIE2 bit CME
; 1.00 04/19/01 Initial Release (BD - generated from Pl CL6F877. i nc)

; Verify Processor

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 470

| FNDEF _ 16F877A
MESSG "Processor-header file msnmatch. Verify selected
processor."
ENDI F

; Regi ster Definitions

pe---- Register Files------mmmmm e o

| NDF EQU H 0000’
TVRO EQU H 0001’
PCL EQU H 0002’
STATUS EQU H 0003’
FSR EQU H 0004
PORTA EQU H 0005’
PORTB EQU H 0006
PORTC EQU H 0007
PORTD EQU H 0008’
PORTE EQU H 0009’
PCLATH EQU H 000A
| NTCON EQU H 000B'
Pl RL EQU H 000C
Pl R2 EQU H 000D
TMVRLL EQU H 000E'
TMVRLH EQU H 000F'
T1CON EQU H 0010’
TVR2 EQU H 0011’
T2CON EQU H 0012’
SSPBUF EQU H 0013’
SSPCON EQU H 0014
CCPRIL EQU H 0015'
CCPR1H EQU H 0016
CCP1CON EQU H 0017
RCSTA EQU H 0018
TXREG EQU H 0019’
RCREG EQU H 001A
CCPR2L EQU H 001B'
CCPR2H EQU H 001C
CCP2CON EQU H 001D
ADRESH EQU H 001E'
ADCONO EQU H 001F
OPTI ON_REG EQU H 0081’
TRI SA EQU H 0085’
TRI SB EQU H 0086
TRI SC EQU H 0087
TRI SD EQU H 0088

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 471

TRI SE EQU H 0089
Pl E1 EQU H 008C
Pl E2 EQU H 008D
PCON EQU H 008E'
SSPCON2 EQU H 0091
PR2 EQU H 0092
SSPADD EQU H 0093
SSPSTAT EQU H 0094
TXSTA EQU H 0098'
SPBRG EQU H 0099
CMCON EQU H 009C
CVRCON EQU H 009D
ADRESL EQU H 009E'
ADCON1 EQU H 009F'
EEDATA EQU H 010C
EEADR EQU H 010D
EEDATH EQU H 010FE
EEADRH EQU H 010F
EECON1 EQU H 018C
EECON2 EQU H 018D
----- STATUS BilS == - - mm e e e e e e e e e e e e e e e e e ee e e ee e
| RP EQU H 0007
RP1 EQU H 0006’
RPO EQU H 0005
NOT_TO EQU H 0004
NOT_PD EQU H 0003
Z EQU H 0002
DC EQU H 0001
C EQU H 0000'
e INTCON BitS === m e e e e o e oo e e e e e e e e e e e e e e o
G E EQU H 0007
PEI E EQU H 0006'
TOI E EQU H 0005
| NTE EQU H 0004
RBI E EQU H 0003'
TOI F EQU H 0002
| NTF EQU H 0001
RBI F EQU H 0000'
e [R = I A I e e
PSPI F EQU H 0007
ADI F EQU H 0006’
RCI F EQU H 0005
TXIF EQU H 0004
SSPI F EQU H 0003'
CCP1I F EQU H 0002
TVMR2I F EQU H 0001
TMRLI F EQU H 0000'
Pe---- I I B T e T I

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 472

CM F EQU H 0006’
EEl F EQU H 0004
BCLI F EQU H 0003’
CCP2I F EQU H 0000
yo---- TLICON Bit S ----mmmmmmmmm oo oo oo oo
T1CKPS1 EQU H 0005’
T1CKPSO EQU H 0004
T1OSCEN EQU H 0003
NOT_T1SYNC EQU H 0002
T11 NSYNC EQU H 0002’ ; Backward conpatibility only
T1SYNC EQU H 0002
TMRLCS EQU H 0001
TMR1ON EQU H 0000
----- T2CON Bit S - - - m s o m oo o oo i
TOUTPS3 EQU H 0006’
TOUTPS2 EQU H 0005
TOUTPS1 EQU H 0004
TOUTPSO EQU H 0003’
TMR2ON EQU H 0002
T2CKPS1 EQU H 0001
T2CKPS0O EQU H 0000
----- SSPCON Bit S ----m-mmmm oo oo oo oo
WCOL EQU H 0007
SSPOV EQU H 0006’
SSPEN EQU H 0005
CKP EQU H 0004
SSPMB EQU H 0003’
SSPMe EQU H 0002
SSPML EQU H 0001
SSPMD EQU H 0000

CCP1X EQU H 0005
CCP1Y EQU H 0004
CCP1MB EQU H 0003’
CCP1M2 EQU H 0002
CCP1ML EQU H 0001
CCP1MD EQU H 0000
----- RCSTA Bit S ---- o mmmmm oo oo oo
SPEN EQU H 0007
RX9 EQU H 0006’
RC9 EQU H 0006’ ; Backward conpatibility only
NOT_RC8 EQU H 0006’ ; Backward conpatibility only
RC8_9 EQU H 0006’ ; Backward conpatibility only
SREN EQU H 0005
CREN EQU H 0004
ADDEN EQU H 0003'

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 473

FERR EQU H 0002

CERR EQU H 0001

RX9D EQU H 0000’

RCD8 EQU H 0000’ ; Backward conpatibility only
yo---- CCP2CON Bit S ----mmmmmmmmm o oo oo oo e oo
CCP2X EQU H 0005’

ccP2y EQU H 0004

CCP2MVB EQU H 0003

ccP2me EQU H 0002

CcCcP2ML EQU H 0001

CCP2MD EQU H 0000’

yo---- ADCOND BitS -----mmmmmmm i m oo o oo oo oo
ADCS1 EQU H 0007

ADCS0 EQU H 0006’

CHS2 EQU H 0005’

CHS1 EQU H 0004

CHSO EQU H 0003'

&0 EQU H 0002

NOT_DONE EQU H 0002

GO_DONE EQU H 0002

ADON EQU H 0000

R o =4 o N == = R e

NOT_RBPU EQU H 0007’
| NTEDG EQU H 0006’
TOCS EQU H 0005’
TOSE EQU H 0004’
PSA EQU H 0003’
pPS2 EQU H 0002’
PS1 EQU H 0001’
PSO EQU H 0000’
----- TRISE BitsS ------mmmmmmmm o oo oo oo oo
| BF EQU H 0007’
OBF EQU H 0006’
| BOV EQU H 0005’
PSPMCDE EQU H 0004’
TRI SE2 EQU H 0002’
TRI SE1 EQU H 0001’
TRI SEO EQU H 0000’
----- PIEL BitsS -------mmmmmmm o e oo oo oo oo
PSPI E EQU H 0007’
ADI E EQU H 0006’
RCl E EQU H 0005’
X E EQU H 0004’
SSPI E EQU H 0003’
CCP1I E EQU H 0002’
TMR2I E EQU H 0001’
TVRLI E EQU H 0000’

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 474

Pm---- Pl E2 BitsS -----mmmmmmm oo oo e oo e e i aao o
CM E EQU H 0006’

EEl E EQU H 0004

BCLI E EQU H 0003'

CCP21 E EQU H 0000'

R (200 N T - T I
NOT_POR EQU H 0001

NOT_BO EQU H 0000'

NOT_BOR EQU H 0000’

Pe---- SSPCON2 Bit S ---- - o mmmmm oo oo oo e e e ie e
GCEN EQU H 0007

ACKSTAT EQU H 0006’

ACKDT EQU H 0005’

ACKEN EQU H 0004

RCEN EQU H 0003'

PEN EQU H 0002

RSEN EQU H 0001

SEN EQU H 0000’

SMP EQU H 0007
CKE EQU H 0006’
D EQU H 0005
| 2C_DATA EQU H 0005
NOT_A EQU H 0005’
NOT_ADDRESS EQU H 0005’
D A EQU H 0005’
DATA_ADDRESS EQU H 0005’
P EQU H 0004
| 2C_STOP EQU H 0004
S EQU H 0003’
| 2C_START EQU H 0003’
R EQU H 0002
| 2C_READ EQU H 0002
NOT_W EQU H 0002
NOT_WRI TE EQU H 0002
R W EQU H 0002
READ VRl TE EQU H 0002
UA EQU H 0001
BF EQU H 0000
----- TXSTA Bit S - --mmmm oo oo oo
CSRC EQU H 0007
TX9 EQU H 0006’
NOT_TX8 EQU H 0006’ ; Backward conpatibility only
TX8_9 EQU H 0006’ ; Backward conpatibility only
TXEN EQU H 0005’
SYNC EQU H 0004
BRGH EQU H 0002

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR 475

TRMT EQU H 0001
TX9D EQU H 0000
TXD8 EQU H 0000’ ; Backward conpatibility only
yo---- CMCON BitS ----mmmmmmmmmm o oo oo oo oo
c2out EQU H 0007
ciout EQU H 0006
C2I NV EQU H 0005
C1l NV EQU H 0004
as EQU H 0003
cwe EQU H 0002
cML EQU H 0001
CcwvD EQU H 0000
yo---- CVRCON BitS -----mmmmmmmmm i m oo oo oo oo oo
CVREN EQU H 0007
CVRCE EQU H 0006
CVRR EQU H 0005
CVR3 EQU H 0003
CVR2 EQU H 0002
CVR1 EQU H 0001
CVRO EQU H 0000
yo---- ADCONL BitS ------mmmmmmmm oo oo oo oo oo
ADFM EQU H 0007
PCFG3 EQU H 0003
PCF&2 EQU H 0002
PCFGL EQU H 0001
PCFG0 EQU H 0000
----- EECONL BitS ------mmmmmm oo oo oo
EEPGD EQU H 0007
WRERR EQU H 0003
WWREN EQU H 0002
VR EQU H 0001
RD EQU H 0000

__MAXRAM H 1FF

__ BADRAM H 8F' -H 90", H95'-H 97", H9A -H 9B
__ BADRAM H 105', H 107'-H 109’

__ BADRAM H 185', H 187'-H 189', H 18F -H 18F

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 16. Digital Control using PC with IR

_CP_ALL
CP_OFF
_DEBUG_CFF
_DEBUG_ON
_WRT_OFF
protection
_WRT_256
wite protected
_WRT_1FOURTH
wite protected
_WRT_HALF
protected
_CPD_OFF
_CPD_ON
_LVP_ON
_LVP_OFF
_BODEN_ON
_BODEN_CFF
_PWRTE_CFF
_PWRTE_ON
_WDT_ON
_WDT_OFF

_RC CsC

_HS ©sC
_XT_0OsC
_LP_CsC

LI ST

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H 3FFF
H 1FFF
H 3FFF
H 37FF
H 3FFF

H 3DFF'

H 3BFF'

H 39FF

H 3FFF
H 3EFF
H 3FFF
H 3F7F
H 3FFF
H 3FBF
H 3FFF
H 3FF7'
H 3FFF
H 3FFB
H 3FFF
H 3FFE
H 3FFD
H 3FFC

476

No prog nemory wite
First 256 prog menmory
First quarter prog nmenmory

First half nmenmory wite

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

