Chapter 9. Timer Modules and Digital Clock Application 208

Chapter 9. Timer Modules and Digital Clock Application

In 16F877, there are three timer modules: TimerO, Timerl, and Timer2 modules. The Timer0
module is a readable/writable 8-bit timer/counter consisting of one 8-bit register, TMRO. It
triggers an interrupt when it overflows from FFh to 00h.

The Timerl module is a readable/ writable 16-bit timer/counter consisting of two 8-bit registers
(TMR1H and TMR1L). The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to
FFFFh and rolls over to 0000h. The Timerl Interrupt is generated on overflow.

The Timer2 is an 8-bit timer with a prescaler, a postscaler, and a period register. Using the
prescaler and postscaler at their maximum settings, the overflow time is the same as a 16-bit
timer. Timer2 is the PWM time-base when the CCP module(s) is used in the PWM mode.
Detailed description and application of each timer, except Timer2 module, follow.

1. Timer O

Timer0 module can work as a timer and a counter, however, in this section of Timer0, we use it
as atimer only. In Timerl module, we use it, instead, as a counter. So, for counter purpose, see
the section for Timerl module.

Timer mode is selected by clearing the TOCS bit (OPTION_REG<5>). In timer mode, the
Timer0 module will increment every instruction cycle (without prescaler). Prescaler concept
comes from the too-fast instruction cycle of the microcontroller. Think about the Timer0
register, TMRO. If the content is incremented by one every instruction (i.e., 0.2 ps with 20 MHz
crystal oscillator), it takes, from 00h to FFh ,only 255x0.2us=51ps. Then, how many overflow
would we need, if we want to have an exact 1 second time delay? It would be over 19500
overflows. A mere 1ms delay would require about 20 overflows. Prescaler then is to give
multiple instructions cycles for the increment of TMRO register. Prescaler value of 1:4 would
take 4 instruction cycles to increment TMRO by 1. On the other hand, prescaler value of 1:256
requires 256 instruction cycles for the increment. With prescaler value of 1:256, one over flow
would take 255x256x0.2us=13056us. Therefore, with 1:256, it would take only 76 overflows to
have an exact 1 second timing. The prescaler is not readable or writable. Instead, The prescaler
assignment is controlled in software by the PSA control bit (OPTION_REG<3>). Clearing the
PSA bit will assign the prescaler to the TimerO module.

Timer) Module for Timer Mode

Data bus
Foscid
!
FSout
TMEQ
Programmabla
Frescaler
.
. Prescale Yalue Set interrupt
Timer Start PreScaler Value Assignment to flag bit TOIF
OPTION_REG=5= Timerld on overflow

OPTIOM_REG<3>
Fig. 70 TimerO Module for Timer Mode

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 209

TimerO starts or stops by the TOCS bit of OPTION_REG. Once it is started, the incremental
signal comes to the TMRO register based on the value selected for a prescaler. When TMRO
register is overflow, the TOIF flag is set to indicate the overflow. There are two ways to monitor
the overflow event of TMRO: polling the TOIF flag and Triggering the TimerO interrupt. In our
example, we explore both the methods.

As you notice, we already talked about one register heavily, OPTION_REG register, while
explaining the TimerO module. The main control action of OPTION_REG register is to assign
a prescaler value to Timer0 and start/stop the timer. Clearing TOCS bit starts the timer
increment based on the prescaler value, assigned by clearing PSA bit and selected by the
PS2:PSO0 bits.

OPTION REG (81h) For Timer Operation

RBPU | INTEDG | Tocs | ToSE | Psa | Ps2 | Ps1 | Pso |

TOCS: TWIED Clock
1 =Tranation on TOCE]T pin
0 =Internal insracti on cycle clock

PSA: Prescaler Aszsignment
1 =PFrescaler isto WD'T
0= Prescaler istothe Tirner0

PE2:PR0: Prescaler Fate Select

THEN Rate
1:2 0 0 0
1:4 0 0 1
1:3 0 1 0
L:lla 0 1 1
1:32 1 0 0
a4 1 0 1
1:123 1 1 0
1:256 1 1 1

The only other file register for the Timer0 module operation is INTCON register. INTCON
register allows, in principle, interrupt for all interrupt enabled devices and modules. For the
polling method, we may be able to enable the global interrupt by setting the GIE bit, but disable
the TOIE bit of Timer0 module interrupt. Therefore, to use the interrupt method for Timer0
application, we have set both the bits: GIE and TOIE. If interrupt method is not used, just
clearing GIE bit would do. In polling method, the pin TOIF bit must be monitored for the
overflow of TMRO. In interrupt method, this is not necessary. However, for both the method,
once a overflow event occurs, the TOIF must be cleared by software, i.e., in the code.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 210

INTCON REGISTER (0Bh, 8Bh, 10Bh, 18Bh) for TIMERO Operation

| GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF

GIE: Global Interrupt Enable bit
1 = Enables all unmasked interrupts
0 = Disables all interrupts

TOIE: TMRO Interrupt Enable bit
1 = Enables the TMRO interrupt
0 = Disables the TNRO interrupt

TOIF: TMRO Interrupt Flag bit

1 = TMRO register has overflowed
(must be cleared in software)

0 = TMRO register did not overflow

2. Timer 0 Application 1 - LED Blinking

Since we discussed about TimerO module and necessary special function registers, it is about the
time to apply this module. We will discuss two simple example cases of LED On and Off
program. In our previous example of LED, we could build a time delay solely based on the
number of instruction cycles for a given routine. In this section, we apply Timer0O module for
the same purpose. To do this, we apply two different approaches as announced earlier: polling
approach and interrupt approach.

TimerQ0 Application with Polling Approach

The polling approach is to monitor the TOIF bit of INTCON register for an overflow event in
TMRO. For a desired delay, we would come up with how many overflows are necessary based
upon the prescaler value. Here is a general procedure for the polling approach.

1. Assign the prescaler to Timer0O by clearing PSA bit (OPTION_REG<3>).

2. Select the desired prescale value by the 3 bits of OPTION_REG. (OPTION_REG<2:0>)
3.Clear TMRO register and clear TOIF bit (INTCON<2>).

4.Turn on the timer by clearing TOCS bit (OPTION_REG<5>).

5.Poll TOIF for the timer overflow. The timer overflows when the value of TMRO increments
from OxFF to 0x00. This sets TOIF.

6. If TOIF is set, clear it.

Then, how do we get 1 second time delay? As we briefly discussed above, with 0.2us of one
instruction cycle time, we need 76 overflows of TMRO when 1:256 prescaler value is selected.

In the sample program, we will turn on an LED for 1 second while turning off the other LED,
and vice versa, using the timer. Let's build the 1 second delay routine. The strategy is to
decrease a temporary counting register COUNT from the magic number 76 every time the TMRO
overflow occurs. The subroutine expires when the COUNT reduces to zero, which will turn into

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

211

one second lapse of time. Before returning to the main program, we have to clear the TOIF bit so
that the TMRO is again incremented by one.

; DELAY SUBROUTI NE f or

DELAY1s
banksel
nmovl w
nmovwf

bt fss
goto
bcf
decfsz
goto
return

over

1 Second del ay

count
Ox4c
count

| NTCON,

TOI F

over
I NTCON, TOIF
count
over

; Count =76 for

;Tnr O overfl ow?

;reset/cl ear when done

Two LEDs are connected to RDO and RD1, respectively.

1 second to expire

PETRATT

RCIICCRL

EIE SPO
EDI' 1P EF]

RE?
R D EES
RALAHL RE5
R/ HLVREF- FE4
RS I VREF 4+ BEZ
R/ TOCE, BE2
R AT % FEL
FEVFD/NS 0 REO/INT
FEIFFR/ANG &g Voo
FEIT SiAHT % Wi
Von N
Wan E FD&PSPG
050 WCLETH ED&PSDS
OSCXCLEOUT ED4/PSP4
BCO RCHFDT
RCLA T ROSTHCE

RCWEDO

RC3/SCESCL RCASDLSDA

EL3PSES
EDAPEE2

Fig. 71 PIC 16F877 connection to two LEDs

The code listed below is the full program except the 1 second time delay we already discussed.

;tmrOpol | . asm

; This program uses TMRO nodule with software polling
;to give exact 1 s delay of LED On and O f

list P
STATUS
TVRO
| NTCON
OPTI ON_REG

16F877
EQU 0x03
EQU 0x01
EQU 0xO0B
EQU 0x81

; Tiner0 register

; Opti on Register

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 212

TOI F EQU 0x02
PORTD EQU 0x08
TRI SD EQU 0x88
LED1 EQU 0x01 ; LED1 is connected to PORTD<1>
LEDO EQU 0x00 ; and PORTD<0>
CBLOCK 0x20 ; RAM AREA for USE at address 20h
count
ENDC ;end of ram bl ock
org 0x0000
goto START
org 0x05
START
banksel | NTCON
clrf | NTCON ;int disabled
clrf TMRO
banksel TRI SD
clrf TRI SD ; PORTD<7- 0>=out put s
movl w 0oxC7 ;11000111
banksel OPTI ON_REG ;pre-scaler at 1:256
novwf OPTI ON_REG ; 11000111
banksel TVRO ; Tinmer0 Starting
clrf TMRO ; TMRO=0
; Determ ne the tine count
noni t or
bsf PORTD, LED1 ;led on 1 second
bcf PORTD, LEDO
cal | del ayls ;1 second tinme delay by TMRO
bcf PORTD, LED1 ;led off 1 second
bsf PORTD, LEDO
cal del ayls
got o noni t or ; Keepi ng on
; DELAY SUBRQUTI NE for 1 Second del ay
; HERE
END

Timer Application with TimerQ Interrupt

The second approach is to use the TimerO interrupt. Even though we have not discussed much
on interrupt, time to time, this subject will pop up, and we will discuss the subject as need basis.
The TMRO interrupt is generated when the TMRO register overflows from FFh to 00h. This
overflow sets bit TOIF (INTCON<2>). The interrupt can be triggered by setting bit TOIE
(INTCON<5>). Bit TOIF must be cleared in software by the Timer0O module interrupt service
routine before re-enabling this interrupt.

The Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) all un-masked interrupts or

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 213

disables (if cleared) all interrupts. Individual interrupts can be disabled through their
corresponding enable bits in the INTCON register. The GIE bit is cleared on reset. The “return
from interrupt” instruction, RETFIE, exits the interrupt routine as well as sets the GIE

bit, which allows any pending interrupt to execute.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the
return address is pushed into the stack and the PC(Program Counter) is loaded with 0004h. In
other words, an interrupt event occurs, the execution of a main program is suspended and the
execution starts from the instruction originating at 0004h. Therefore, any routine residing from
the 0004h to handle interrupt is usually called an interrupt handler or interrupt service routine.
Once in the interrupt service routine the source(s) of the interrupt can be determined by polling
the interrupt flag bits. Generally the interrupt flag bit(s) must be cleared in software before re-
enabling the global interrupt to avoid recursive interrupts.

Interrupt latency is defined as the time from the interrupt event (the interrupt flag bit gets set) to
the time that the instruction at address 0004h starts execution (when that interrupt is enabled).
For synchronous interrupts (typically internal), the latency is 3 instruction cycles. For
asynchronous interrupts (typically external), the interrupt latency will be 3 - 3.75 instruction
cycles. The exact latency depends upon when the interrupt event occurs in relation to the
instruction cycle. In most application, the interrupt latency does not give much delay.
Moreover, we have no control over this. Accept!

So, for TimerQ application, we have to have the interrupt handler residing at 0004h. This
handler will decide what we do (or what we want the 16F877 controller to do) when the Timer0
interrupt event occurs by the TMRO overflow. What we do is, whenever there is interrupt (this
case only from the TimerO module of TMRO overflow), that we increase the COUNT. That is
all. The handler does not care what the current value of COUNT is. The clearing of COUNT
and checking the COUNT is the job of 1 second delay subroutine.

;Interrupt Handler for TimerO interrupt

ORG 0x0004 ;I nterrupt Vector address

i ncf COUNT ;increase COUNT

bcf | NTCON, TOIF ;clear the interrupt flag for
; anot her interrupt

retfie ;return fromlnterrupt

Since the COUNT is accessed by any part of the code, the 1 second time delay subroutine must
check the value of COUNT starting from 0. When the COUNT becomes 76 (or 4Ch), the
subroutine expires and the 1 second time delay is achieved. The subroutine does not have to
take care of clearing TOIF; it's done by the interrupt handler. When the COUNT becomes 76 and
the subroutine expires, the COUNT must be cleared for another 1 second counting.

; subroutine del ayls

del ayls
banksel COUNT
bt fss COUNT, 0x06 :check if COUNT increased to Ox4c
;01001100 bit 6
goto del ayls

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

intls

intls2

bt fss
goto

bt fss
goto

clrf
return

CQOUNT,
intls

COUNT,
intls2

COUNT

0x03

0x02

;bit 3

cbit 2

;now 1 sec expired
; COUNT=0

The example code, without including the subroutine, is listed below.

;tnrOi

nt.asm

; This program uses TMRO nodule with interrupt enabl ed
;to give exact 1 s delay

0x03
0x01
0x0B
0x81
0x08
0x88
0x01
0x00
0x02
0x05
0x02
0x07

0x20

; Timer0 nodul e
;I ntcon
; Option Register

; LED is connected to PORTD<1>
;tmr0 overflow flag
; T O i nterrupt enabl e/ di sabl e
;Zero flag on STATUS (1: zero)
; @ obal Interrupt
; RAM AREA for USE at address 20h

;end of ram bl ock

list P = 16F877
STATUS EQU
TMRO EQU
| NTCON EQU
OPTI ON_REG EQU
PORTD EQU
TRI SD EQU
LED1 EQU
LEDO EQU
TOI F EQU
TOI E EQU
ZERO EQU
G E EQU
CBLOCK
count
ENDC
org 0x0000
goto START
; I nterrupt Handl er
org 0x0004
i ncf COUNT
bcf | NTCON.
retfie
START clrf COUNT
banksel | NTCON
bsf | NTCON
bsf | NTCON.
clrf TVRO

, TOIF

, G E
, TOIE

;I nterrupt Vector
;increase COUNT

;clear the overflow flag
;return fromlnterrupt

;starting from COUNT=0

;@ obal Interrupt Enable
;tmr O interrupt enabled

214

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 215

banksel TRI SD

clrf TRI SD ; PORTD<7- 0>=out put s
nmovl w 0xCr7 ;pre-scaler at 256
banksel OPTI ON_REG

novwf OPTI ON_REG ; Timer0 starts

I's count decreased to 0? Then 1 second passed.
ti mecount is for how many seconds to pass.
; Determ ne the tine count

ONOFF
banksel PORTD
bsf PORTD, LED1 ; LEDL ON
bcf PORTD, LEDO
cal l del ayls
banksel PORTD
bcf PORTD, LED1 ; LEDL of f
bsf PORTD, LEDO
cal | del ayls
goto ONOFF ; repeat

; subroutine del ayls

After running the program, you may be tempted to apply it to a digital clock. Several versions of
digital clock (or just a timer watch) are discussed before the final version, displayed on an LCD
module.

3. Timer0 Application 2 -DIGITAL CLOCK

In the application of TimerO module, we will explore the world of digital clock. First two
versions are aimed to display the time on a PC monitor; one (CLOCKZ1) as a timer watch and the
other (CLOCK?2) as a digital clock with time setting allowed using a keyboard. The second two
versions are displayed on a LCD module; one (CLOCKS3) as a timer watch and the other
(CLOCKA4) as a digital clock with time setting using four buttons. In CLOCK4, another interrupt
event, RBO/INT external interrupt, is utilized. All through the version, 1 second time delay is
implemented using the polling approach.

CLOCK1-Display on PC monitor

This version of digital clock is a timer watch displayed in the format of HH:MM:SS for Hour,
Minute, and Second display. The timer starts from 00:00:00 and ticks as an actual timer watch.
Let's discuss the strategy. As in the LED On/Off program, when the COUNT reaches at 76, the
Second must be increased by one. Then, the number indicating the current Second, in hex
number, must be converted to a 2-digit decimal number. These decimal digits will be displayed
occupying the two slots assigned for each time unit.

So we first need a general routine which convert a 1-byte hex number to a 2-digit decimal
number. In other words, a single bye hex number, say, 16h which is 22 in decimal must be
converted to two 8-byte number in decimal number system.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 216

16h: 0001 0110 ---> 0000 0010 (Upper Byte) and 0000 0010 (Lower Byte)

For Hour, since we can have from 00 to 23, the maximum hex number for the time unit is HH=
17h=0001 0111. If put the upper nibble to hh1hex (a variable in the assembly code) and the
lower nibble to hhOhex, we would have:

HH=00010111 ---->hh1dex=00000001 and hhOhex=00000111

If the bit0 of hhldex is 1, it corresponds to 16. Therefore, the upper decimal digit would be
increased by 1, and the lower decimal digit must be increased by 6.

Then, the hhOdex must be examined with the additional increment of 6. In this example, the new
hhOhex becomes 00001101=0Dh. Then, what would be the maximum value of hhOhex? Since
the maximum value hhOhex can get is 00001111=0Fh, it could reach above 20 but not above 30.
Therefore, we have to check if hhOhex is greater than 20. In the example it's not above 20. So
we check if the value is above 10, then. Since ODh is bigger than 9we have to subtract 10 from
0D, while adding the carry to the upper digit, hhldec. In other words, when hhOhex is bigger
than 19we increase hhldec by two and subtract 20 from hhOhex. The resultant hhOhex becomes
hhOdec. If hhOhex is not bigger than 19 but bigger than 9, then we increase hhldec by 1 and
subtract 10 from hhOhex. This hhOhex becomes hhQOdec, the lower digit of the decimal number.

OK. Let's do the math again for a hex number to a 2-digit decimal number conversion. This
algorithm is the basis for a hex number, increased by the 1 second time delay, to 2-digit decimal
number display.

Example 1: HH=13h=19d=0001 0011.

(1) hh1hex = 0000 0001 (upper nibble)

(2) hhOhex =0000 0011 (lower nibble)

(3) Since the Bit0 of hh1hex is 1 (i.e., 16): increase hhldec by 1 (hhl1dec=1
now) and increase hhOhex by 6. hhOhex=0000 1001 now.

(4) Since hhOhex is not greater than 9, (it is 9), hhOhex becomes hhldec. So
hhldec =9 now.

(5) Finally, the 2 digits of decimal number is: 1 (by hhldec) 9 (by hhOdec)

(6) Pint hh1dec followed by hhOdec, 19, to indicate the 19" hour

Example 2: MM (for Minute) = 3Bh=59d = =0011 1011

(1) rmilhex = 0000 0011 (upper nibble)

(2) mOhex = 0000 1011 (lower nibble)

(3) Since Bit 0 of mLhex is 1 (i.e. 16x2°=16d), increase mmiLdec by 1 and
nmOhex by 6. So, currently, nmldec=1, and the new value of nmDhex =
0000 1011 + 0000 0110 = 0001 0001 = 17d

(4) Since Bit 1 of mLhex is 1 (i.e., 16x2*=32d) increase mmLdec by 3 and
nmOhex by 2. Therefore, the current value of mmidec =4 and the new
value of mOhex is 19d.

(5) Now checking mDhex indicates that it is smaller than 20 and bigger than 9.
So it would increase mmiLdec by 1 and the resultant rmOhex after being

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 217

subtracted by 10 is 9. Finally, mmldec=5 and rmDdec =9.
(6) Display the two digits, 5 and 9, to indicate the 59" minute.

Example 3: SS (for Second) = 1Fh=0001 1111 = 31d

(@) ss1hex = 0000 0001 (upper nibble)

(b) ssOhex = 0000 1111 (lower nibble)

(c) The bit0 of ss1hex is 1, therefore, 16x2°=16, increase ss1dec by 1 and
ssOhex by 6. So the current value of ss1dec =1 and the new value of
ssOhex is 15d+ 6d= 21d.

(c) Since hhOhex is bigger than 19, increase ss1dec by 2 to 3 and subtract 20
from hhOdex, which results in 1d as ssOdec.

(d) Therefore, the final values for ss1dec and ssOdec are 3 and 1,
respectively.

(e) Display ss1dec followed by ssOdec to indicate the 31" second.

Since the maximum decimal number is 59, and it's hex equivalent is 3Bh, there is no need to
check the 2" or higher bit of hh1hex, mmLhex, or ss1hex. In other words, all we have to do
is the check the 0™ and 1% bits of the upper nibble. So the following is the subroutine to convert
a 1-byte hex number to a 2 digit decimal number.

; ===h2d2====

;1 byte hex to 2 digit DECI MAL numnber

;for SS second (MM minute, or HH hour)

; The hex nunber is stored in hnms before calling this subroutine
h2d2

;convert 1-byte hex nunber to 2 digit deci nal nunber

novf hns, O : W&- - hns
andl w OxOF ;1 ower nibble
nmovw hnms0hex ; hmsOhex
novf hns, 0
novwf hnst enp
swapf hmst enp, 0
andl w OxOF ;upper ni bbl e
nmovw hnmslhex
clrf hnsldec
clrf hnms0dec
bt f ss hms1lhex, 0x01 ; Bitl check (32)
got o bOcheck
i ncf hnsldec ;hnmeldec = hnsldec + 3
i ncf hnsldec
i ncf hnmsldec ;
i ncf hnms0hex ; hmsOhex = hnsOhex +2
i ncf hnms0hex
bOcheck
bt fss hnms1hex, 0x00 ; Bit0 check (16)
got o hrms0check
i ncf hnmsldec ;hmsldec=hnsldec + 1
i ncf hnms0hex
i ncf hns0hex
i ncf hns0hex

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

hnmsOch

hns0ch

| ess

i ncf

i ncf

i ncf
eck
bcf
novf
cal |
bt fss
goto
nmov!| w
subwf
novf
nmovw
i ncf

i ncf
return
eck?2
bcf
novf
cal |
btfss
goto
nmov| w
subwf
novf
nmovwf
i ncf
return

novf
nmovwf
return

hns0hex
hns0hex
hnms0hex

HI LC20, 0x00
hns0Ohex, 0
TVEENTY

H LC20, 0x00
hnmsOcheck?2
0x14
hns0hex
hns0Ohex, 0
hnms0dec
hnmsldec
hnsldec

H LO10, 0x00
hnms0Ohex, 0
TEN

Hl LO10, 0x00
| ess

Ox0A
hnms0hex
hns0Ohex, 0
hns0dec
hnsldec

hns0Ohex, 0
hns0dec

; hmsOhex = hnsOhex + 6

;index for >19 condition
;check if it's bigger than 20(d)

;i f >19, subtract 20

;then hnsldec=hnsldec+2

;two deci nal

i f <20, the check if >9

digits

;then check >10

;less than <10

i f >9
;subtract 10

; hnmeldec=hnsldec+1

;i1 f <9 then

;keep it to ssOdec

218

The subroutine for TEN (checking if a number is greater than or equal to 10) has been discussed

before. The two subroutines, TEN and TWENTY (checking if a number is greater than or equal to
20), are listed below. For the new subroutine, TVWENTY, read the comment lines very carefully to
understand the strategy.

;subroutine to check >=10 or
---> H LOL0=1

; >=10
1 <10 -

09

;10
;11
;12
;13
;14
;15
;16
TEN

-->H LO10=0
4 3210

0 1001
0 1010
0 1011
0 1100
0 1101
0 1110
0 1111
1 0000

banksel
clrf
nmovwf
bt fss

H LO10
H LO10
TENt enp
TENt enp, O0x

<10

04

;4th bit

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 219

goto t hi rdbit
bsf HI LO10, 0x00
return

t hirdbit
btfss TENt enp, 0x03 ;3rd bit
return
btfss TENt enp, 0x02
got o next bi t
bsf HI LOL0, 0x00
return

next bi t
bt fss TENt enp, 0x01
return
bsf HI LOL0, 0x00
return

;subroutine to check >=20 or <10 ==================
: >=20 ---> H LO20=1

:<20 --->H L0 =0

:20d = 0001 0100 b4& b2=1

121 0001 0101

122 0001 0110

TVENTY
banksel H LO20
clrf HI LC20
novwf Twent yt enp
bt fss Twentytenp, 0x04 ;4th bit
return
bt f ss Twent yt enp, 0x02 ;2nd bit
return
bsf HI LO20, 0x00
return

Now our discussion must go to increasing the Second, and if Second reaches 60 that value must
be changed to 00 while increasing the Minute by 1. Similar measure has to be applied to Minute
and to Hour. When Hour becomes 24, then it should clear every time unit so that it restarts from
00:00:00. Therefore, after we call 1 second time delay (which is exactly the same routine we
used for the LED On/Off using the polling approach) we increase Second (represented by SS in
the code) by one. Then we have to check if SS is 60. 60 in decimal is 3C in hexadecimal and
00111100 in binary.

To make sure the content of SS is exactly 00111100, the easiest way to do so is to apply XOR
operation with SS. The result of XOR operation of SS with 00111100 is zero only when the
content of SS is 00111100. All other values will produce at least one set bit, thus making the
result non-zero. The zero or non-zero result can be checked by the ZERO flag of the STATUS
register. The tactic applies to find the content of Minute (represented by MM) for 60. A similar
measure can solve for Hour (represented by HH) for 24. Examine closely the following code
for the main timer watch program.

cal del ayls ;1 sec el apsed
i ncf SS

nmovf SS, 0

clrf STATUS

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 220

xor | w B' 00111100 ;i f SS=60(d) or 3C or 0011 1100
btfss STATUS, ZERO
got o again ;i f <60 continue
clrf SS ;i f SS=60, then SS=0
i ncf MM ; MVEMW1
novf MM 0
clrf STATUS
xor | w B' 00111100
btfss STATUS, ZERO
goto again ; <60, then continue
clrf WM ;i f MvE6O, then MVEO
i ncf HH ; HH=HHHL
novf HH, O
clrf STATUS
; check 24hour 24d = 00011000
xor | w B' 00011000’
btfss STATUS, ZERO
goto again
clrf STATUS ;i f HH=24
call cl ear ;clear all the tinme units (HH=MVESS=00)
got o again

The following example code contains all the necessary components including all the subroutines.
A complete listing is necessary this time to show the algorithmic process for the very first step
for a digital clock. The code will display the time in HH:MM:SS format starting from 00:00:00
like a timer watch. Read comments very carefully to better understand the code.

; cl ockl. asm

; (timer watch)

; This program uses TMRO nodule with interrupt enabl ed
;to give exact 1 s delay for

; HH: MMt SS f or nat

; Di spl ayed on a PC nonitor

list P = 16F877

STATUS EQU 0x03

CARRY EQU 0x00

TMRO EQU 0x01 ; Timer0 nodul e

| NTCON EQU 0x0B ;I ntcon

OPTI ON_REG EQU 0x81 ; Opti on Register

TOI F EQU 0x02 ;tmr0 overflow flag

TOI E EQU 0x05 ; T O interrupt enabl e/ disable
ZERO EQU 0x02 ;Zero flag on STATUS (1: zero)
G E EQU 0x07 ; @ obal Interrupt

TXSTA EQU 0x98 ; TX status and control

RCSTA EQU 0x18 ; RX status and control

SPBRG EQU 0x19 ; USART TX Regi ster

RCREG EQU Ox1A ; USART RX Regi ster

Pl R1 EQU 0xO0C ; USART RX/ TX buffer status (enpty or

full)

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 221

RCl F EQU 0x05 ; PIR1<5>; RX Buffer 1-Full O-Enpty

TXI F EQU 0x04 ; PIR1<4>:; TX Buffer 1-enpty O-ful

TXMODE EQU 0x20 ; TXSTA=00100000 : 8-bit, Async

RXMODE EQU 0x90 ; RCSTA=10010000 : 8-bit, enable port,
;enabl e RX

BAUD EQU OxOF ; OXOF (19200), Ox1F (9600)

CBLOCK 0x20 ;. RAM AREA for USE at address 20h
ASCl I reg
count
HHs et
Mvs et
SSset

Hs ;general variables for HH,L, MM and SS
hms Lhex
hmsOhex
hnmsldec
hnmsOdec
hnst enp

HH
HHt enp
HH1
HHO
HH1hex
HHOhex
hhldec
hhOdec
MVI
MMV enp
MVIL
MVD
mrlhex
mODhex
mildec
mmDdec
SS
SSt enp
SS1
SS0
sslhex
ssOhex
ssldec
ssOdec
H LOL0
H LC20
TENt enp
TVENTYt enp
ENDC ;end of ram bl ock

GOro START

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

banksel

clrf

banksel

bcf
clrf
nmov!| w

banksel

nmovw

cal |
cal |

again
novf
nmovwf
cal |
novf
nmovwf
novf
nmovwf

novf
nmovwf
cal |
novf
nmovw
novf
nmovwf

novf
nmovw
cal |
novf
nmovwf
novf
nmovw

cal |

cal |
i ncf
novf
clrf
xor | w
bt fss
goto

clrf
i ncf
novf
clrf
xor |l w
bt fss
goto

Async_node

cl ear

COUNT

COUNT ;

| NTCON

| NTCON
TVRO

0xC7

OPTI ON_REG
OPTI ON_REG

;clear every file register

SS, 0

hns

h2d2
hnmsldec, O
ssldec
hns0dec, 0
ssOdec

MM O
hns

h2d2 ;

hnsldec, O
nmrildec
hnms0dec, 0
mDdec

HH, O ;

hns

h2d2
hnsldec, O
hhldec
hns0dec, 0
hhOdec

cl ockdi spl ay

del ayls

SS

SS, 0

STATUS

B' 00111100
STATUS, ZERO
again

SS

MM

MM 0

STATUS

B' 00111100
STATUS, ZERO
again

;conversion of SSinto 2 —digit deci mal
; ssldec & ssOdec

222

starting from COUNT=0

Interrupt Disabl ed

;pre-scal er at 255

; For display to PC nonitor

(HH, WM SS all 0)

nunber

conversion of MM to nmldec & nmDdec

conversion of HH to hhldec & hhOdec

;display themin HH MVt SS f or nat

;clock ticking here for 1 sec

;increase SS

;if SS=60(d) or 3C or 0011 1100
;i1 f SS<60 do the conversion and displ ay

;if SS=60, SS=0, and MVEMW1

;if MWkO, do the conversion and display

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 223

clrf MM ;i f MVEGO, MVEO, and HH=HH+1
i ncf HH
nmovf HH, O
clrf STATUS
; check 24hour 24d = 00011000
xor | w B' 00011000’
bt fss STATUS, ZERO ;i f HH<23, do the conversion and display
got o again
clrf STATUS
cal cl ear ;i f HH=24, HH=EMMESS=0, start again
goto again
; SUBROUTI NES
;. ===h2d2====

;1 byte hex to 2 digit DECI MAL nunber
; for SS second (MM minute, or HH hour)

h2d2
;convert 1-byte hex number to 2 digit deci mal numnber
novf hns, O ; W&- - hns
andl w OxO0F ;1 ower nibble
nmovwf hns0hex : hmsOhex
novf hns, 0
novwf hmst enp
swapf hmst enp, O
andl w OxOF ;upper ni bbl e
nmovwf hns1lhex
clrf hnsldec
clrf hnms0dec
bt fss hns1lhex, 0x01 : Bl check
goto bOcheck
i ncf hnsldec
i ncf hnmsldec
i ncf hrmsldec ; 32(d)
i ncf hns0hex
i ncf hns0hex
bOcheck
bt fss hnmslhex, 0x00 : BO check
got o hrms0check
i ncf hnsldec ; 16(d)
i ncf hns0hex
i ncf hns0hex
i ncf hnms0hex
i ncf hnms0hex
i ncf hns0hex
i ncf hns0hex
hns0Ocheck
bcf H LC20, 0x00
novf hms0Ohex, 0 ;check if it's bigger than 20(d)
cal | TVENTY
bt fss HI LC20, 0x00
goto hnms0check?2
nmov| w 0x14
subwf hnms0hex
novf hns0Ohex, 0
nmovwf hns0dec
i ncf hnsldec

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 224

i ncf hnsldec ;two decimal digits
bcf HI LC20, 0x00
return
hnmsOcheck?2
bcf Hl LOL10, 0x00
novf hns0Ohex, 0 ;then check >10
cal | TEN
bt fss H LO10, 0x00
got o | ess ;1 ess than <10
movIl w Ox0A
subwf hns0hex
novf hns0Ohex, 0
nmovw hnms0dec
i ncf hnmsldec
return
| ess novf hns0Ohex, 0
novwf hrms0dec ;S0 keep it to ssOdec
return

;end of h2d2 subroutine
;DELAY SUBROUTI NE for 1 Second del ay

DELAY1s

banksel count
novl w Ox4c ; Count =76 for 1 second to expire
nmovw count
over btfss I NTCON, TOI F ; Tnr O overfl ow?
goto over
bcf | NTCON, TOIF ;reset
decfsz count
goto over
return

; RXTX Initialization with Asyc Mde
; Async_node Subroutine

Async_node
banksel SPBRG
novIl w baud ; B 00001111" (19200)
nmovw SPBRG
banksel TXSTA
novl w TXMODE ; B' 00100000" Async Mode
nmovwf TXSTA
banksel RCSTA
nmov| w RXMODE ; B' 10010000' Enabl e Port
nmovw RCSTA
return
: RS232 TX subroutine ============
TXPOLL
banksel Pl R1
bt f ss PIRL, TXIF ; Check if TX buffer is enpty
goto TXPCOLL
banksel TXREG
nmovwf TXREG ; Place the character to TX buffer

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

return
RXPQOLL
banksel Pl R1
btfss PIRL, RCIF ;RX Buffer Full? (i.e.
goto RXPCOLL
banksel RCREG
novf RCREG, 0 ;received data
return
;TO send CR o= =—=—=—===
CR
nmov| w H 0d' : CR
cal | TXPOLL
return
:To send CR and LF ===============
CRLF
nmov| w H 0d' : CR
cal | TXPOLL
nmovIl w H Oa' i LF
cal | TXPOLL
return
;subroutine to check >=10 or <10 ==================
: >=10 ---> H LOL0O=1
;<10 --->H LO10=0
TEN
banksel H LOL0
clrf H LO10
novwf TENt enp
btfss TENt enrp, 0x04 ;4th bit
goto t hirdbit
bsf H LO10, 0x00
return
t hirdbit
bt fss TENt enp, 0x03 ;3rd bit
return
bt fss TENt enp, 0x02
got o next bi t
bsf H LO10, 0x00
return
next bi t
bt fss TENt enp, 0x01
return
bsf H LO1L0, 0x00
return
;subroutine to check >=20 or <10 ==================
; >=20 ---> H LQ20=1
1<20 --->H LO20 =0
:20d = 0001 0100 b4& b2=1
TVEENTY
banksel H LC20
clrf H LC20
novwf Twent yt enp
bt f ss Twent ytenp, 0x04 ;4th bit
return
bt fss Twentytenp, 0x02 ;2nd bit
return

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Dat a Recei ved?)

to W

Chapter 9. Timer Modules and Digital Clock Application 226

bsf HI LO20, 0x00
return

“subroutine CLOCKDI SPLAY

cl ockdi spl ay
banksel hhldec
novl w 0x30 ;To all digits add 30h to convert to ASCI
addwf hhldec
addwf hhOdec
addwf mildec
addwf mmOdec
addwf ssldec
addwf ssOdec
novf hhildec, O
cal | TXPOLL
novf hhOdec, 0
cal | TXPOLL
nmov| w !
cal | TXPOLL -
novf mildec, O
cal | TXPOLL
novf mOdec, 0
cal | TXPOLL
nmovl w v
cal | TXPOLL -
novf ssldec, O
cal | TXPOLL
novf ssOdec, 0
cal | TXPOLL
cal | CR
return

;clock clear-reset subroutine

cl ear

clrf STATUS
banksel SS
nmovl w 0x00 ; WO
clrf HH
clrf MVI
clrf SS
clrf hhlhex
clrf hhOhex
clrf hhldec
clrf hhOdec
clrf miLhex
clrf mDhex
clrf mildec
clrf mOdec
clrf sslhex
clrf ssOhex
clrf ssldec

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 227

clrf ssOdec
clrf hns
return

END

: END of the code

When you run the code, you should see a screen shown below on your monitor.

“g lest - HyperTerminal
Bl Edit Wiew Cal Tramsfer Help

sENEEEEEN

00:00:03
4 v

|Cannectad [todetect |1 o

CLOCK?2 - Time Setting with PC Monitor Display

Now let's make the timer watch as an actual digital clock displayed on the same monitor. To do
this we have to provide one important feature: Time setting. Allowing a user (or you) to set the
time before the clock starts involves more things than one can imagine. First, we have to receive
keyed-in numbers for Hour, Minute, and, Second, respectively. Since the numbers entered are in
decimal, they should be converted to hexadecimal numbers. These hex numbers are then
supplied to the conversion subroutine to convert back to 2-digit decimal numbers for clock
display. Why can't we use the keyed-in decimal numbers directly to display the time? Why do
we have to reconvert the converted hex number from a decimal number to a decimal number for
clock display?

Think about the following situation. For simplicity of argument, consider only the time unit of
Second. In other words, only Second is allowed to be adjusted by a user. If you type 45 using
your keyboard for Second as the starting time for your digital clock. Each digit could become the
first and second digit for Second: ss1dec and ssOdec as used in the above timer watch
program. Then, clock starts from there. So the next clock display after 1 second time delay,
hopefully, would be 00:00:46.

However this wishful thinking does not work. It's because after 1 second time delay, SS (the
representative variable for Second) would be increased by 1. However, the SS does not contain
the would-be starting value of 45, since we directly have the ss1dec and ssOdec from the
number 45. So, we have to convert to SS from ss1dec and ssOdec for the starting value.
That's why we plan to convert the keyed-in decimal numbers to an 8-byte hex number (say, SS,
in this case). Conversion from SSto ssldec and ssOdec is already covered by using the
h2d2 subroutine.

Therefore the additional parts we have to have to the previous code of timer watch are as

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 228

follows:

a. Reading keyed-in decimal number for Hour, Minute, and Second.

b. Conversion of the keyed-in decimal numbers to 1-byte hex numbers (to HH, MM and SS)
c. Starting the clock using them as starting values.

We need a detailed discussion on the first two parts. The format we want to use for time setting
is that we type HH: as a prompt for a user to set the Hour. At the next line, we prompt MM: for
the Minute. And at the third line would prompt SS: for the Second. Then at the fourth line, the
clock with the set values would start.

Reading the keyed-in decimal numbers is rather an easy task. The serial reception we once
studied can be easily applied to receive any keyed-in characters. The following is the subroutine
for keyed-in reading for time setting, t i meset . It does not involve much complexity.

; subroutine
;tine set pronpt and reception

ti neset
cal | CRLF ;nbve to the next line as the starter
nmov| w '"H
cal | TXPOLL
nmovl w "H
cal | TXPOLL
nmov| w !
cal | TXPOLL ; HH: as typed
call RXPOLL ;read the first digit, hhldex
call TXPOLL ;echo the keyed-in nunber
; subwf f - W--->d
nmovw hhlhex
nmovl w 0x30
subwf hhlhex ;convert from ASClI1 to hex numnber
cal | RXPOLL ;read the second digit, hhOhex
cal | TXPOLL ;echo
nmovwf hhOhex
nmovl w 0x30 ; hhOhex=hhOhex- 30h
subwf hhOhex ;conversion to hex from ASCI |
cal | CRLF ;nobve to the next |ine
movIl w 'M
cal | TXPOLL
nmov| w 'M
cal | TXPOLL
nmovIl w v
cal l TXPOLL ; MM pronpt ed
cal | RXPOLL ;read the first digit mmihex
cal | TXPOLL ;echo
nmovw nmrlhex
nmovl w 0x30
subwf miLhex ;ASCI 1 to HEX
cal | RXPOLL ;read the second digit, nmDhex
cal | TXPOLL ;echo
nmovwf mODhex

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 229

nmov! w
subwf

cal |

nmov!| w
cal |
nmov| w
cal |
nmov!| w
cal |
cal |
cal |
nmovw
nmov!| w
subwf

cal |
cal |
nmovwf
nmov! w
subwf

cal |
return

0x30
mDhex

CRLF

‘g
TXPOLL
rg

TXPOLL

TXPOLL
RXPQOLL
TXPOLL
sslhex
0x30

sslhex

RXPQOLL
TXPOLL
ssOhex
0x30

ssOhex

CRLF

: RS232 TX and RX subroutines

TXPOLL
banksel
bt fss
goto
banksel
nmovw
return

banksel
bt fss
goto
banksel
novf
return

Pl R1

PIRL, TXIF
TXPOLL
TXREG
TXREG

Pl R1

PIRL, RCIF
RXPOLL
RCREG
RCREG, 0

; ASCI T --> HEX

;nobve to the next |ine

; SS: pronpt ed
; sslhex
;echo

: To HEX from ASCI

; ssOhex
;echo

;nobve to the next |ine

; Check if TX buffer is enpty

Pl ace the character to TX buffer

s RX Buffer Full? (i.e. Data Received?)

;received data to W

The next thing we will discuss is the conversion of the keyed-in decimal numbers to 1-byte hex
numbers (to HH, MM and SS). The objective of the discussion is how to convert the 2-digit
decimal numbers, for example hh1hex and hhOhex, to the 1-byte hex number HH.

Let's start with an example for HH (and hh1hex and hhOhex). Since the maximum number we
get from the upper (or 10) digit hh1hex is 2, i.e., 0000 0010, therefore 0000 0010 should be
interpreted as 20d (or 14h) while 0000 0011 as 10d (or 0Ah). The sum of this interpreted
number and the lower (or unit) digit hhOhex would make HH, the hex number equivalent.

7
We can get a general interpretation rule of the upper digit as follows: Y k, 2" 10, where k, is

n=0

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 230

the binary value of the n™ bit of the digit. Of course, since we are dealing with a digital clock,

For MM(and mriLhex and mDhex) and SS (and ss1hex and ssOhex), since the maximum
number for the upper digit nmiLhex (or ss1hex) is 5, i.e., 0000 0101, the number n goes only
to 2 from the formula.

By the way, a number 0000 0101, using the formula above, is interpreted to:

2
Yk, 2"00=12°00+0@2'M0+1[2°10=50
n=0

Then, how do we apply this formula for upper digit in the 17F877 coding? Directly applying
the formula to a code is too luxurious to the microcontroller. However, we can indirectly apply
the formula by testing ky, the n™ bit of the digit and multiplying by (10x2"). The following
subroutine, d22h, is to apply the formula to convert a 2-digit decimal number into a 1-byte hex
number. After examining the subroutine, try to make the subroutine simpler by making a part of
the code as another subroutine, and apply the same procedure to Hour, Minute, and Second
processing.

; subroutine
;conversion of decimal two digits to 1-byte hex nunber

d22h
: HOUR FI RST
nmov| w 0x00
bt fss hhlhex, 0x01 ;bitl check for HOUR
goto hnext 1
addl w 0x14 i f bitl=1, +20
hnext 1
bt fss hhlhex, 0x00 ;bit0 check
got o hnext 2
addl w Ox0A ;i f bit0=1, +10
hnext 2
nmovw HH
nov f hhOhex, 0 ; +hhOhex the | ower digit
addwf HH ;total sum
;end of HH cal cul ation
: M NUTE NEXT
nmov| w 0x00
bt fss mrilhex, 0x00 :bit0 check M NUTE
goto mext 1
addl w Ox0A ;+10
mext 1
bt fss mrilhex, 0x01 ;bitl check
goto mext 2
addl w 0x14 ;+20
mext 2
bt fss mrilhex, 0x02 ;bit2 check
goto mext 3
addl w 0x28 ; +40
mext 3
nmovwf MVI
novf mOhex, 0

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

addwf

; For SECOND
nmov| w
bt fss
goto
addl w

snext 1
bt fss
goto
addl w

snext 2
bt fss
got o
addl w

snext 3
nmovwf
novf
addwf

return

MV

0x00
sslhex, 0x00
snext1
Ox0A

sslhex, 0x01
snext 2
0x14

sslhex, 0x02
snext 3
0x28

SS
ssOhex, O
SS

;total

:bit0 check for

; +10
ybitl c
; +20
ybit2 ¢

; +40

;total

sumin hex

heck

heck

sumin hex

SECOND

231

The following code is the main part of the CLOCK2 program. No subroutine is listed. Also, the
block of variables (registers) defined from the address 20h is also omitted. The
CBLOCK. . . ENDC part is the same as the one we used in CLOCKZ1 program.

cl ock2. asm

;Clock program

; Tinme setting all owed
;Display format of HH MMV SS
; Di spl ayed on a PC nonitor

list

STATUS
CARRY

TMVRO

| NTCON
OPTI ON_REG
TOI F

TOI E

ZERO

GE

TXSTA
RCSTA
SPBRG
TXREG
RCREG
Pl RL
full)
RCI F
TXI F

P = 16F877

EQU 0x03
EQU 0x00
EQU 0x01
EQU 0xO0B
EQU 0x81
EQU 0x02
EQU 0x05
EQU 0x02
EQU 0x07
EQU 0x98
EQU 0x18
EQU 0x99
EQU 0x19
EQU Ox1A
EQU 0x0C
EQU 0x05
EQU 0x04

TimerO
;Intcon

; Option

;tmr0 overflow flag

nodul e

Regi st er

; T O i nterrupt enabl e/ di sabl e
; Zero flag on STATUS (1: zero)

: d oba

I nterrupt

; TX status and control
:RX status and control
; Baud Rat e assi gnnment

; USART TX Regi ster

; USART

; USART RX/ TX buffer status (enpty or

; PI R1<5

RX Regi st er

> RX Buffer

: PIR1<4>: TX Buffer

1-Full O-Enmpty
1-enpty O-ful

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 232

TXMODE EQU 0x20 ; TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ; RCSTA=10010000 : 8-bit, enable port,
; enable RX
BAUD EQU OxOF ; OXOF (19200), Ox1F (9600)
CBLOCK 0x20 ;. RAM AREA for USE at address 20h

; NOTE THAT THI' S PORTI ON MJST BE COPI ED FROM CLOCK1. ASM CODE
; FOR A SUCCESSFUL COWPI LI NG

ENDC ;end of ram bl ock
’ org 0x0000
GOoro START
org 0x05
START
banksel | NTCON
clrf | NTCON ;int disabled
clrf TMRO
banksel OPTI ON_REG ;pre-scaler at 256
novwf OPTI ON_REG ; 11000111
banksel TMRO
clrf TMRO
cal | Async_node ; RX-232
cal cl ear ;clear every file register
begi n
;di splay clock reset pronpt
cal | ti meset ;time adj ust ment

;conversion of decimal two digits to 1-byte hex nunber

cal | d22h
again

novf SS, 0

nmovwf hns

cal | h2d2

novf hnsldec, O

nmovwf ssldec

novf hnms0dec, 0

nmovwf ssOdec

novf MV O

nmovw hns

cal | h2d2

novf hnsldec, O

nmovwf mildec

novf hns0dec, 0

nmovw mOdec

novf HH, O

nmovwf hns

cal | h2d2

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

novf
nmovwf
novf
nmovw

cal |
cal |
i ncf
novf
clrf
xor | w
bt fss
goto

clrf
i ncf
novf
clrf
xor | w
bt fss
goto

clrf
i ncf
novf
clrf

xor | w
bt fss
goto
clrf
cal |
goto

; SUBROUTI NES HERE

END

hnsldec, O
hhldec
hns0Odec, 0
hhOdec

cl ockdi spl ay
del ayls

SS

SS, 0

STATUS

B' 00111100" ;if SS=60(d) or 3C or 0011 1100

STATUS, ZERO
again

SS

MM

MM 0

STATUS

B' 00111100
STATUS, ZERO
again

MM
HH

HH, 0
STATUS

; check 24hour 24d = 00011000

B' 00011000’
STATUS, ZERO
again
STATUS

cl ear

again

233

When we run the CLOCK2 program, after setting the time, for example, HH=08, MM=52,
SS=04, we would see the following screen on the monitor.

#g text - HpperTerminal
Bila Edit Wies LCall Tramsfer Help

D] 53] ols| =

HH: 08
MmM:52
S804
08:52:06
| b

[Canrectad lfuto detect |

i

CLOCKS3 - LCD Display Version

The next version is closer to a digital clock, or rather a timer watch displayed on a LCD module.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 234

We use the 20x4 LCD module we already used for the previous example programming. For this
timer watch example, we will stick to 4-bit interface configuration. If you lost most of the gains
on LCD, go back to the proper section and code for better understand this section.

The final result of CLCOK3 on LCD is to display HH:MM:SS format display without time
setting features. Therefore, it would start from 00:00:00 at the second line of the LCD screen.
The first line of the LCD would display 'PIC CLOCK' as a logo.

Since we already have necessary subroutines, the primary task is to send the calculated digits of
time units to LCD not to the PC monitor. Therefore, we have to change the subroutine

cl ockdi spl ay which is for PC monitor to cl ockLCDdi spl ay for LCD. Basically this
change comprises most of the changes we need for displaying on LCD. All the other
subroutines are the same as we used from CLOCK1 and CLOCK2. Remember the two
subroutines we developed for LCD: instruction write for 4-bit interface (i nst w4) and data write
for 4-bit interface (dat aw4).

; subroutin CLOCKLCDDI SPLAY
cl ockLCDdi spl ay

banksel hhldec

nmovl w 0x30

addwf hhldec ; ASClI | conversi on
addwf hhOdec

addwf mrildec

addwf mmOdec

addwf ssldec

addwf ssOdec

novf hhldec, O

cal | dat aw4 ;hhldec wite to LCD
novf hhoOdec, 0

cal | dat aw4 :hhOdec wite to LCD
nmov| w !

cal | dat aw4 ;o foll ows

novf mrldec, O

cal | dat aw4

novf mmDdec, O

cal | dat aw4

nmov| w !

cal | dat aw4

novf ssldec, O

cal | dat aw4

novf ssOdec, O

cal | dat aw4

return

The example code listed below comes with only main part: subroutines are omitted since we
already discussed them before. As before, the CBLOCK. . ENDC part is also omitted since it is
the same block we used for CLOCKL.

;cl ock3. asm

"DIG TAL CLOCK ON LCD
NO BUTTONS FOR Tl ME SETTI NG

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

; 20x4 LCD nodul e
; by Truly (HD44780 conpati bl e)

4-bit interfacing

; Pin Connection fromLCD to 16F877

; LCD (pin#) 16F877 (pi n#)
; DB7 (14) ----- RB7(40)
; DB6 (13) ----RB6(39)
; DB5 (12) ----RB5(38)
; DB4 (11) ----RB4(37)
; DB3 (10)

; DB2 (9)

; DB1 (8)

,DBO (7)

yE(6) ------ RB2(35)
;RW(5) ----- RB3(36)
;RS (4) ----- RB1(24)
Vo (3) ----- G\D

;vdd (2) ----+5V

;Vss (1) ----- GN\D

Exanpl e cl cok displ ay:
; PIC CLOCK (1° line)
: HH: MM SS (2" line)

list P = 16F877

STATUS EQU 0x03
PORTB EQU 0x06
TRI SB EQU 0x86
RS EQU 0x01 ;RB1
E EQU 0x02 ;RB2
RwW EQU 0x03 ; RB3
CARRY EQU 0x00
TMRO EQU 0x01 ; Timer0 nodul e
| NTCON EQU 0x0B ;I ntcon
OPTION_ REG EQU 0x81 ; Option Register
TOI F EQU 0x02 ;tmr0 overflow flag
TOI E EQU 0x05 ; T O i nterrupt enabl e/ di sabl e
ZERO EQU 0x02 ; Zero flag on STATUS (1:
G E EQU 0x07 ; @ obal Interrupt
; RAM
CBLOCK 0x20

; NOTE | NCLUDE THE VARI ABLES (FI LE REG STERS) HERE

ENDC

; program shoul d start from 0005h

;0004h is allocated to interrupt handler

org 0x0000
goto START

235

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 236

org 0x05
Start
BANKSEL TRI SB
; 1 for input, 0 for output
novl w 0x00
novwf TRI SB ; ALl out put
;LCD routine starts
cal del ay10ns
cal l del ay10ns ; LCD war nt up
banksel PORTB
bcf PORTB, RW ; RWset LOWhere
;give LCD nodul e to reset automatically
; For TVMRO
banksel | NTCON
clrf | NTCON ;int disabled
clrf TMRO
novl w 0xC7
banksel OPTI ON_REG ;pre-scaler at 256
novwf OPTI ON_REG ; 11000111
banksel TMRO
clrf TMRO
; END FOR TMRO

; 4- Bl T | NTERFACI NG

;Function for 4-bit (only one wite nust be done)
;1 n other words, send only the high nibble

; | MPORTANT
movl w 0x28
cal | hni bbl e4
; Function for 4-bit, 2-line display, and 5x8 dot matrix
novl w 0x28
cal | i nstw4
;Display On, CUrsor On, No blinking
novl w OxOE ; OF woul d blink
cal | i nstw4
; DDRAM address increment by one & cursor shift to right
movl w 0x06
cal l i nstw4

; DI SPLAY CLEAR

nmovl w 0x01
cal | i nstw4

; Set DDRAM ADDRES

nmovl w 0x80 ; 00
cal | i nst w4
; WRI TE DATA in the 1st position of line 1
nmov| w P P
cal | dat aw4
nmovl w e i
cal | dat aw4

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 237

movl w 'C : C

cal | dat aw4

nmovl w b ; Space
cal | dat aw4

movl w 'C

cal | dat aw4

nmovl w "L

cal | dat aw4

nmov| w 'O

cal | dat aw4

nmovl w 'C

cal | dat aw4

nmov| w 'K

cal | dat aw4

cal | cl ear ; HH=EMMESS=0

; hhldec=hh0dec=0
; mmldec=mDdec=0
; ssldec=ss0dec=0
AGAI N
; CLOCK DI SPLAY
; Set DDRAM address for the 1st position of line 2 (40h)

nmov| w 0xC0 : B' 11000000
cal | i nst w4 : RS=0

; CLOCK DI SPLAY PART
; Conversion of a hex to a 2-digit decimal nunber

novf SS, 0
nmovwf hns
cal | h2d2
novf hnmsldec, O
nmovw ssldec
novf hns0dec, 0
nmovwf ssOdec
novf MM O
nmovw hns
cal | h2d2
novf hnsldec, O
nmovwf mildec
novf hnms0dec, 0
nmovw mOdec
novf HH, O
nmovwf hns
cal | h2d2
novf hnmsldec, O
nmovwf hhldec
novf hns0dec, 0
nmovwf hhOdec
; Di spl ayi ng them on LCD
call cl ockLCDdi spl ay
;1 sec del ay
call del ayls

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

i ncf
novf
clrf
xor | w
bt fss
goto

clrf
i ncf
novf
clrf
xor | w
bt fss
goto

clrf
i ncf
novf
clrf

xor | w
bt fss
goto
clrf
cal |
goto

; HERE

If we compile the full code of CLOCK3 and run it, then we would see the following display.

SS
SS, 0
STATUS

B'00111100' ;if SS=60(d) or 3C or 0011 1100

STATUS, ZERO
again

SS

MM

MM 0

STATUS

B' 00111100
STATUS, ZERO
again

MM
HH

HH, 0
STATUS

: check 24hour 24d = 00011000

B' 00011000’
STATUS, ZERO
again
STATUS

cl ear

again

PIC CLOCK
00:00:04

CLOCK4 - LCD Display with Time Setting

238

This is the eventual version of our digital clock. We display the time on the LCD and provide
the feature of time setting. For the time setting feature, we have four buttons: TIME button for

the time setting session, HOUR button for Hour setting, MIN button for Minute setting, and
CLOCK button to start the clock. The TIME button would stop the clocking procedure and
accepts the HOUR and MIN keys to set the time. Since we cannot always wait for the TIME
button pressed, we would better have some type of interruption feature of 16F877.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 239

As discussed early in this chapter, interrupt is a useful feature that allows the main program can
proceed without keeping eye on the event. Since the button triggered signal comes from outside
(external) of 16F877, we consider the RBO/INT interrupt. As the name implies, the RBO pin
(PORTB<0>) has a dual use: regular I/O pin as RBO and external interrupt (INT) source. This
interrupt can be enabled by setting the INT enable bit INTE (INTCON<4>).

External interrupt on the RBO/INT pin is edge triggered, either rising, if INTEDG bit
(OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge

appears on the RBO/INT pin, flag bit INTF (INTCON<1>) is set. Flag bit INTF must be cleared
in software (i.e., in the code) in the interrupt service routine before re-enabling this interrupt.

The interrupt handler then should do a lot of work: (i) reading the HOUR and MIN buttons, (ii)
increasing the corresponding hex numbers for Hour and Minute, and (iii) reading CLOCK button
to expire the interrupt handler.

The main routine is not much different from CLOCKS: it displays the contents of HH, MV] and
SS (after hex to decimal conversion) no matter what the contents are. The only change includes
the necessary accommodation for PORTB for buttons and one LED attached at PORTD for
indication purpose. This LED will be turned on as far as the interrupt handler is being processed.
The CLOCK button would turn off the LED and clock starts. The circuit diagram for CLOCK4
is illustrated below. The TIME button is connected to RBO/INT pin, and HOUR, MIN, and
CLOCK buttons are connected to RD5, RD4, and RD2, respectively. The outputs from the
buttons, when not pressed, are High, and when pressed, the outputs experience a High-to-Low
transition. Therefore, the proper set-up for INTEDG is 'clear".

Let's now discuss about the interrupt handler. As discussed, when the TIME button is pressed
the RBO/INT pin experiences the High-to-Low transition and this triggers the INT interrupt.
Then the Program Counter (PC) is changed to 0004h where the interrupt handler is residing. A
TIME button would clear the contents of the time units, and fill them with new values according
to the HOUR and MIN buttons. One click of HOUR or MIN would increase the value by 1 and
we display the content on LCD.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 240

Digital Clock 4-hit Interface

| DE7

| DES Backlight
B=n] Current limiting
resistor = 5 ohm

REVTHT
Voo

W +5
k)
FDHPSET = o_?f |

=

PIC 16F877-20/F
SRR T T TR

k=

ED&TERS
EDATERS
ED4/PEP4
ECHESIDT
ECSTHCE
RCYEDD
EC4SDIED A
EDHTEEE
EDATER2

SRR L o

Eﬁl[{ﬂ T CLOCK

HOUR
INT {external Imoﬂup!}_\t

b
—

Fig. 72 Interrupt Handler

Let's consider how many different tasks are involved in the interrupt handler. First, we have to
detect the button pressing of HOUR or MIN. Then, as they are pressed, we have to display the
settings as they are changed. Detecting button presses is not difficult; it only needs a delicate
adjustment in time delays in button polling. This will be detailed while explaining the listed
code. So read the comment line very carefully for the most sensitive and reliable button reading.

So, our main topic is to remembering the set time by the buttons and displaying them as they are
changed, all inside the interrupt handler. So when a keyed-in from say, HH, is detected, the
content of HH is increased by 1. Then, we check if HHis 24. If it is 24, we have to change it to 0.
For MM if the content is 60, we have to clear the value. After this adjustment, we display the
content in decimal format. This is done by calling the hex-to-2 digit decimal conversion
subroutine, h2d2. Then, we move the cursor of the LCD to the first column of line 2 and write
them. The following list of the interrupt handler contains everything we discussed now.

: RBO/ I NT handl er

org 0x04 ;the interrupt vector address
banksel TRI SD

novl w B'11111100'

novwf TRI SD ; Buttons and LEDs

; Set DDRAM address for the 1st position of line 2 (40h)

nmovl w 0xC0 ; B' 11000000’
cal | i nstw4 : RS=0
cal | cl ear ;clear all the contents

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 241

cal |

banksel
bsf
cal |

cl ockLCDdi spl ay

PORTD
PORTD, 0x01
del ay10ns

; CLOCK ADJUSTMENT ROUTI NE
M N Button Pressed

; Check for HOUR or

clrf
nmov| w
nmovwf

HOURCHECK
cal |
banksel
btfss
goto
decfsz
goto

nmov!| w
nmovwf
clrf
M NCHECK
cal |
bt fss
goto
decfsz
goto
ADJ DONE
bt fsc

goto
bcf
banksel
bcf
retfie

; hour adj ust ment

HOURADJ

clrf
banksel
i ncf
novf
xor | w
bt fsc
clrf

i IF HHE=24 set to O

goto

M NADJ
clrf
banksel
i ncf

I F MEGBO set to O

novf

STATUS
0x03
Dt enp

del aylms
PORTD
PORTD, HOUR
HOURADJ

Dt emp
HOURCHECK

0x03
Dt enp
STATUS

del aylns
PORTD, M N
M NADJ

Dt emp
M NCHECK

PORTD, CLOCK

HOURCHECK

I NTCON, | NTF
PORTD

PORTD, 0x01

STATUS

HH

HH

HH, 0

B' 00011000’
STATUS, ZERO
HH

prep

STATUS
W
W

MM 0

; Di splay 00:00: 00
;as the time setting starts

;I NT indicator on

;this is to check HOUR and M N buttons
;3 tines at atine with 1 ns del ay

; 1lms delay is the best one

; HOUR key is detected

;1 ns delay is the next one

; MN key is detected

;Wait until the CLOCK

;start button is pressed

;1 F not, scan again for HOUR' M N buttons
;Clear the INTF flag

; I NT indicator off
;return frominterrupt to main program

; 24=00011000

yif =24, clear HH

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 242

xor | w B' 00111100" ; 60=00111100
bt fsc STATUS, ZERO
clrf MM i f =24, clear MM
goto prep
prep
banksel HH : hex-to-deci nal conversion
novf HH, O
nmovw hns
cal | h2d2
novf hnsldec, O
nmovwf hhldec
novf hnms0Odec, 0
nmovw hhOdec
novf MV O
nmovwf hns
cal | h2d2
novf hnmsldec, O
nmovwf mildec
novf hns0dec, 0
nmovwf mmOdec
nmovl w 0x00 ;for SS (no adjustnent)
nmovwf ssldec
nmovwf ssOdec

; Set DDRAM address for the 1st position of line 2 (40h)

novl w 0xCO0 ; B' 11000000

cal | i nstw4 ; RS=0

cal l cl ockLCDdi spl ay

cal l del ay10ns

got o ADJDONE ;scan again for another button press

;end of the interrupt handl er

The interrupt handler actually takes most of the code of CLOCK4. The following code, with the
interrupt handler, for the presentation of the coding structure, shows the CLOCK4 program in all
except subroutines and CBLOCK. . . ENDC block.

;cl ock4. asm

;DIGTAL CLOCK ON LCD ------ the |l ast version
;W th Buttons

. 20x4 LCD nodul e
; by Truly (HD44780 conpati bl e)

; 4-bit interfacing

Pi n Connection fromLCD to 16F877

; LCD (pin#) 16F877 (pi n#)
; DB7 (14) ----- RB7(40)

; DB6 (13) ----RB6(39)

; DB5 (12) ----RB5(38)

; DB4 (11) ----RB4(37)

; DB3 (10)

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 243
,DB2 (9)

, DBl (8)

; DBO (7)

;E(6) ------ RB2(35)

s RW(5) ----- RB3(36)

RS (4) ----- RB1(24)

;Vo (3) ----- GN\D

vdd (2) ----+5V

Vss (1) ----- G\D

; BUTTONS

; RBO---External INT---TIME SET button (Return to 00:00: 00 and ready for
change)
; RD5 --- HOUR button (increase one at a button)
;RD4 --- MN button
; RD2 --- CLOCK Button (Start the cl ock)
; NOTE: RBO is normal HIGH, and it goes to LOWwhen the TIME button is
pressed.
; Therefore (1) | NTEDG (OPTI ON REG<6>) nust be cleared.
; (2) AE (dobal interrupt) of I NTCON nust be set
; (3) INTE (I NTCON<4>) nust be set to enable INT interrupt
; (4) Once triggerred, |INTF (I NTCON<1>) woul d be set; this
; nmust be cl eared by software.
; Exanpl e di spl ay:
; PI C CLOCK
; HH: MMt SS

list P = 16F877

STATUS EQU 0x03
PORTB EQU 0x06
TRI SB EQU 0x86
PORTD EQU 0x08
TRI SD EQU 0x88
RS EQU 0x01 ;RB1
E EQU 0x02 ;RB2
RW EQU 0x03 ; RB3
CARRY EQU 0x00
TMRO EQU 0x01 ; Timer0 nodul e
| NTCON EQU 0x0B ;I ntcon
OPTION_REG EQU 0x81 ; Option Register
| NTEDG EQU 0x06 ; RBO/ I NT egde selection (1: rising; 0O:falling)
| NTE EQU 0x04 ; RBO/ | NT enabl e
| NTF EQU 0x01 ; RBO/ I NT flag
TOI F EQU 0x02 ;tmr0 overflow flag
TOI E EQU 0x05 ; T O i nterrupt enabl e/ di sabl e
ZERO EQU 0x02 ;Zero flag on STATUS (1: zero)
G E EQU 0x07 ; @ obal Interrupt
CLOCK EQU 0x02 ; CLOCK START BUtton
HOUR EQU 0xO05 ; HOUR adj
M N EQU 0x04 ; M NUTE adj
; RAM

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

CBLOCK 0x20
; NOTE | NCLUDE THE SAME BLOCK, TO TH S PLACE, USED FOR CLOCK3
; ALONG W TH THE LI NE BELOW

Dt enp
ENDC

; program shoul d start from 0005h
;0004h is allocated to interrupt handl er

org 0x0000
goto START
org 0x04

: RBO/ | NT handl er
banksel TRI SD
nmovIl w B' 11111100
nmovw TRI SD

; Set DDRAM address for the 1st position of line 2 (40h)

nmovl w 0xC0 : B' 11000000’

cal | i nstw4 : RS=0

cal | cl ear ;clear all the contents
call cl ockLCDdi spl ay

banksel PORTD

bsf PORTD, 0x01 ;I NT i ndi cator on

cal | del ay10ns

; CLOCK ADJUSTMENT ROUTI NE
; Check for HOUR or M N Button Pressed

clrf STATUS
nmovl w 0x03
novwf Dt enp
HOURCHECK
cal l del aylms ; 1lms delay is the best one
banksel PORTD
btfss PORTD, HOUR
goto HOURADJ
decfsz Dt enp
goto HOURCHECK
nmovl w 0x03
novwf Dt enp
clrf STATUS
M NCHECK
cal | del aylms ;1 nms delay is the bext one
btfss PORTD, M N
goto M NADJ
decfsz Dt enp
goto M NCHECK
ADJ DONE
btfsc PORTD, CLOCK
; VWit until the CLOCK start button is pressed
goto HOURCHECK
bcf | NTCON, | NTF

244

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

banksel PORTD
bcf PORTD, 0x01 ; INT indicator off
retfie ;return to main program

; hour adj ust ment

HOURADJ
clrf STATUS
banksel HH
i ncf HH
novf HH, O
xor | w B' 00011000" ; 24=00011000
bt fsc STATUS, ZERO
clrf HH
i IF HHE=24 set to O
goto prep
M NADJ
clrf STATUS
banksel MVI
i ncf MVI
;I F MEGBO set to O
novf MM O
xor | w B' 00111100' ; 60=00111100
bt fsc STATUS, ZERO
clrf MVI
goto prep
prep
banksel HH
novf HH, O
nmovwf hns
cal | h2d2
novf hnmsldec, O
nmovw hhldec
novf hns0dec, 0
nmovwf hhOdec
novf MM O
nmovw hns
cal | h2d2
novf hnsldec, O
nmovwf mildec
novf hnms0Odec, 0
nmovwf mOdec
nmovl w 0x00 ;for SS
nmovwf ssldec
nmovw ssOdec
; Set DDRAM address for the 1st position of line 2 (40h)
movIl w 0xCo ; B' 11000000
cal | i nst w4 : RS=0
cal | cl ockLCDdi spl ay
cal | del ay10ns
goto ADJ DONE

; END of | NT handl er

245

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 246

Start
BANKSEL TRI SB
; 1 for input, 0 for output
novl w 0x01
novwf TRI SB ; ALl out put except RBO/INT
banksel TRI SD
nmovIl w B'11111100" ; PORTD all inputs except the last two
novwf TRI SD
banksel PORTD
bcf PORTD, 0x01
bcf PORTD, 0x00 ; OFf the LEDs
;LCD routine starts
call del ay10ns
cal l del ay10ns
banksel PORTB
bcf PORTB, RW ;RWset LOWhere

;give LCD nodul e to reset automatically

; For RBO/ | NT
banksel I NTCON
clrf I NTCON ;int disabled
bsf I NTCON, G E ;interrupt enabled
bsf I NTCON, | NTE ; RBO/ I NT enabl e
: FOR TMRO
clrf TVRO
nmovl w 0xC7
banksel OPTI ON_REG ; pre-scaler at 255
nmovwf OPTI ON_REG ;10000111 (w th I NTEDG=0)
banksel TNVRO
clrf TVRO
: END FOR TVRO

; THE ONLY CHANGE | N 4-BI T | NTERFACI NG
; EXCEPT 2 SUBROUTI NES

;Function for 4-bit (only one wite nust be done)
;1 n other words, send only the high nibble

;| MPORTANT
LCDINIT
nmovl w 0x28
cal | hni bbl e4

; Fundtion for 4-bit, 2-line display, and 5x8 dot matrix
novl w 0x28

cal i nstw4
;Display On, CUrsor On, No blinking
novl w 0x0E ; OF woul d blink

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 247

cal i nstw4
; DDRAM address increment by one & cursor shift to right
movl w 0x06
cal l i nstw4
LCDREADY
; DI SPLAY CLEAR
movl w 0x01
cal i nstw4

; Set DDRAM ADDRES

nmov| w 0x80 ;00
cal | i nstw4
; WRI TE DATA in the 1st position of line 1
movl w 0x50 P
cal | dat aw4
nmov| w 0x49 o
cal | dat aw4
movl w 0x43 : C
cal | dat aw4
nmov| w !
cal | dat aw4
movl w 'C
cal | dat aw4
nmov| w "L
cal | dat aw4
movIl w o)
cal | at aw4
movl w 'C
cal | dat aw4
nmov| w 'K
cal | dat aw4
cal | cl ear

AGAI N
; CLOCK DI SPLAY
; Set DDRAM address for the 1st position of line 2 (40h)

nmovl w 0xC0 : B' 11000000
cal | i nstw4 : RS=0

; CLOCK DI SPLAY PART

novf SS, 0
nmovw hns

cal | h2d2

novf hnsldec, O
nmovwf ssldec
novf hnms0dec, 0
nmovw ssOdec
novf MV O
nmovwf hns

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

cal |
novf
nmovw
novf
nmovwf

novf
nmovw
cal |
novf
nmovwf
novf
nmovw

cal |
cal |
i ncf
novf
clrf
xor | w
bt fss
goto

clrf
i ncf
novf
clrf
xor | w
bt fss
goto

clrf
i ncf
novf
clrf

xor | w
bt fss
goto
clrf
cal |
goto

; SUBROUTI NES
; HERE
END
;end of program

When you compile the full code and run it, the first LCD display would be like this: the clock

starts from 00:00:00.

h2d2
hnsldec, O
mrildec
hnms0dec, 0
mmDdec

HH, O

hns

h2d2
hnsldec, O
hhldec
hns0dec, 0
hhOdec

cl ockLCDdi spl ay
del ayls

SS

SS, 0

STATUS

B' 00111100" ;if SS=60(d) or 3C or 0011 1100

STATUS, ZERO
again

SS

MM

MM 0

STATUS

B' 00111100
STATUS, ZERO
again

MM
HH

HH, 0
STATUS

: check 24hour 24d = 00011000

B' 00011000’
STATUS, ZERO
again
STATUS

cl ear

again

248

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 249

PIC CLOCK
00:D0D:D2

When you press the TIME button, the LCD would go back to 00:00:00. And the clock does not
tick, instead, it waits for HOUR, MIN, or CLOCK button.

PIC CLOCHK
00:00:00

If you press the buttons of HOUR and MIN, the numbers for HH and MM would increase.

PIC CLOCK
0d:17:00

When you finally press the CLOCK button, the digital clock starts to tick from the set time.

If you leave your clock run for a day or so, you may notice that your clock is slightly slower than
your watch. The reason is that LCD display consumes a lot of time, a few tens of milli-seconds.
Therefore, to make your digital clock reasonably accurate, we reduce down the number of
overflows (remember 76) to make an exact 1 second delay. It is very hard to consider all the
delay factors in the program and find the exact number of the overflow count, however, just one
or two trial and error hopefully gives us the best number. So we change the 1 second time delay
to accommodate the delay involved in LCD display, as follows.

; DELAY SUBROUTI NE for 1 Second del ay

DELAY1s

banksel count
nmovl w 0x3C ; Count =76 for 1 second to expire
;lowered to 60 to
; accommodat e LCD del ays
nmovwf count
over btfss | NTCON, TOI F ; Tmr O overfl ow?
goto over
bcf | NTCON, TOIF ;reset
decfsz count
goto over
return

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 250

4. TIMER 1 and Application to Color Sensing

Timerl Module

The Timerl module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and
TMRL1L) which are readable and writable. The TMR1 Register pair (TMR1H: TMR1L)
increments from 0000h to FFFFh and rolls over to 0000h. The Timerl Interrupt, if enabled, is
generated on overflow which is latched in the TMR1IF (PIR1<0>) interrupt flag bit. This
interrupt can be enabled/disabled by setting/clearing the TMR1IE (PIE1<0>) interrupt enable bit.
Timerl can operate in one of three modes as a synchronous timer, a synchronous counter, or an
asynchronous counter.

This section discusses only of the synchronous counter feature of Timerl module, counting the
pulses entered to either RCO/T10SI (Pin#15) or RC1/T10SO (Pin#16) pin. For further and
other applications, please refer to the Microchip 16F877 data sheet. The operation of Timerl is
controlled by T1CON register.

T1CON: Timerl Control Register (10h) for Synclhoonous Counter Mode

[- | -- [TicKps1 | TiCcKPe0 | TIOSCEN | TISVNC | TMEICE | TMRION |

TICKEPSL:TI1CEKPSD:
Timerl Input Clock Prescale
11=1:8Prescale value
10=1:4 Prescale value
01 = 1:2Prescale value
00=1:1Prescale wvalue

T1OSCEN: Timer]l Oscillator Exatle hit
| =External Clock Pinis RC1L/T10S]
1 =External ClockPinis RCO/T1050

T1SYNC: Tirner]l Extemal Clock
| =Dw not synchronize external clock inpuat
0 = Synchronize external clock input

TMEI1CS: Timer]l Clock Source Select bit
| =F:xternal dock (on therisng edge)
0 =Internal clock (Foscid)

TMEI1OMN: Titnetr] On hit
1 =FEnatles Timerl
0= Ztops Timerl

Since we are reading external clock (or pulse) and we assume that it is not that fast, we normally
set the prescaler 1:1 ratio. In other words, we do not delay the sampling of the external pulse,
but treat the external clock as it is to count number of pulses per given period.

In the counter mode, there are two pins we can use to apply the external clock pulse:
RCO/T10S0O and RC1/T10SI. Selection of one of them is controlled by the TLIOSCEN bit.
Setting the bit selects RC1/T10SO and clearing it does for RCO/T10SI. Since our counter mode
is synchronous, we clear the TLSYNC bit. For TMR1CS bit, we set it for external clock

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 251

counting. Finally, we set the TMR1ON bit to start the Timerl module. Counting of the rising
edge of the external clock pulse would increase the TMR1 registers (TMR1H and TMR1L) by
one. When the content crosses from FFFFh to 0000h, the Timerl interrupt bit TMR1IF would be
set, if interrupt is enabled. Usually, when we count number of pulses within a period, we
disable the interrupt, and after the lapse of the time, we stop the timer and read the content of
TMRL1 register. The initialization of TLCON for counting external clock pulses entered to the
pin #15 RCO/T10SO would be: 00000010. When we start the counting, we set the TMR1ON,
bit0 of the TLCON.

Timerl Counter Application to Color Sensor

Our application of Timerl module as a counter is to color sensing using Texas Advanced
Optoelectronic Solutions (TAOS)'s TCS230 Programmable Color Light-to-Frequency Counter.
The TCS230 combines configurable silicon photodiodes and a current-to-frequency converter on
single monolithic CMOS integrated circuit.

The output is a square wave (50% duty cycle) with frequency directly proportional to light
intensity (irradiance). The full-scale output frequency can be scaled by one of three preset values
via two control input pins. Digital inputs and digital output allow direct interface to a
microcontroller or other logic circuitry. Output enable (OE) places the output in the high-
impedance state for multiple-unit sharing of a microcontroller input line. The light-to-frequency
converter reads an 8 x 8 array of photodiodes. Sixteen photodiodes have blue filters, 16
photodiodes have green filters, 16 photodiodes have red filters, and 16 photodiodes are clear with
no filters. All 16 photodiodes of the same color are connected in parallel and which type of
photodiode the device uses during operation is pin-selectable. Photodiodes are 120 pum x 120 um
in size and are on 144-um centers.

S0IC PACKAGE

E

1 (TOP VIEW) . | —_— ———— 7 output i
S0 h— LS8 Light B : Photodiode C“'rﬂ'g:ﬁ;i:f;“"ﬂy |
s 2[;'] [hs2 —* : Aray I
UF:'IEZfI] [,E% ouT '———T————————_

P
| lJ—|_..:a
GND O 1 Vpp s2 §3 S0 §1 OE

Fig. 73 Soic Package

VDD is for power supply voltage of +5V and ~OE should be Low to enable the color sensor.
OUT pin is to generate frequency equivalent of color and luminance level. The frequency of the
output can be programmed by S1 and S2 pins, from 100% to 20% to 2% to 0%. When 0% is
selected with S1=L and SO=L, the color sensor is actually inactive. The typical full scale (100%)
frequency is 600KHz. 20% of the frequency would then be 120KHz, and 2% would be 12KHz.
If we have high rate clock pulse and need very accurate count, we may want to use the full
frequency, however, in usual application 20% or 2% is just fine.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

S0 81 OUTPUT FREQUENCY SCALING (fy)
L L Hower down

L H 2%

H L 20%

H H 100%

52 83 PHOTODIODE TYPE
L L Red

L H Blue

H L Clear (no filter)

H H Green

252

The pins of S2 and S3 determines which color filter we apply. The selection of S2=L and S3=L

would focus on red color, while S2=H and S3=H focus on green color.

by TCS230 needs a little experience. Under the same brightness, red color object would
generate higher frequency with red filter, and relatively low frequency with green and blue filter.

If we increase the brightness of the object, all the frequencies of the three filters would greatly

The color determination

increase. Therefore, the ratio not the frequency themselves is used to determine the true color of
an object. Also, you may have to measure the frequency from OUT pin under your test

condition. Brightness surrounding the sensor and the object along with the brightness of the

LEDs for white light very much effect the nominal frequency of the sensor.

RANAHD FES
RALAH RES
RA ML VFEF- FE4
RATMIEAFEF BES
FA4/TOCK FE
RAMH4TT % FEl
FEOFTVANS 0 REQDNT
FELFFRAMG &5 Voo
FEIT /AT % Vo
Vop _ FDUPSTT
Wan E EDaPEMG
OSCLELETH RD5DITS
OSCHCLEQTT RD4/PSP4
RO RCIFEDT
RCLCCDD RCSTHCE
RCCCERL RCSD0
RCE/SCHSCL ROASDLSDA
EDOP R0 RDEPSTS
FDLDSFL FD2TSE:

:":l [:: rs2
ﬂ . [.Ej & OUT

TCS230
h— G

Fig. 74 PIC 16F877 connection to TC230

Since TCS230 is a very small surface mount device (SMD), without a surface mount adaptor
such as Model 9165 , a Surfboard series from Capital Advanced Inc, it is almost impossible to

implement the sensor.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 253

Fig. 75(a) Surfboard Fig. 75(b) Surfboard with TCS230
mounted on top

Also, providing a white light directly to the object is important, since the color we perceive is
nothing but the reflected wave from the object. The following photo shows the author's
implementation of a color sensor module with a TCS230, a 9165 Surfboard, and two high
intensity white LEDs. Commercial version would have a focus lens on top of the TCS230 to
have focused reflected wave from the object.

As illustrated, for 16F877 connection, we tied the ~OE to the ground so that TCS230 is always
turn on. By making SO=0 and S1=1, we select 2% of full frequency, i.e., 12 KHz. However,
under the author's test condition, the nominal frequency is only about 0.8 KHz for the "full
frequency of 12KHZ" configuration. Further test shows that the maximum frequency is about
2.5 KHz. In other words, under the test condition, the maximum number of pulse count would
be about 2500 per second. If we limit the counting period to only 100ms, the maximum number
would only be 250, which is small enough to be filled only the lower TMR1 register (TMRL1L).

TCS230 Details

b P B bl i
O R e

01" Surface Mount Adaptor Board
Fig. 76 Implementation of color sensor module

The color filter selection pins S2 and S3 are connected to RB5 and RB4, respectively. The OUT
pin of TCS230 is connected to RCO/T10SO pin of 16F877.

The following example code tries to read a frequency from an object for color determination, by

reading 100ms for pulse count from a selected color filter configuration. The frequency counts
for Red, Blue, and Green are to be displayed to a PC monitor, in a two-digit hex number format;

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 254

Redl & RedO, Bl uel & Bl ue0, and G- eenl & G een0. The code does not try to
determine the color, instead it just spews out the R, G, B, ratios in frequency counts. The color
determination is left to the readers. The listing omits the subroutines, as usual.

The readers are encouraged to carefully follow the comments in the following code for better
understanding of the program. Note that the del ay1s subroutine used here does not utilize the
Timer0 module; instead this is the first time delay subroutine we made using just numbers of
instructions to make 1 second delay. To ease confusion, only delayls subroutine is included in
the subroutine section. All others are omitted.

; TCS230. asm

; This is to count 50% duty cycl e pul ses from TCS230 col or sensor
; using tnrl nodul e
; of synchronous counter feature

Qut put pulse from TCS230 is connected to RCO (TICK1)
; Color Filter Selection S2 and S3 are connected to RB5 and RB4 respectively
; S2 (RB5) S3 (RB4)

;L L Red Filter
;L H Blue Filter
; H H Green Filter
H L No Filter (Cl ear)
; Qutput Pul se Frequency Selection SO and S1 are as follows (for 12 KHz
nom nal)
; SO S1
;L H (12 KHz)---actual value is rmuch snaller in a test condition
like 1 — 2KHz

list P = 16F877

STATUS EQU 0x03

PORTB EQU 0x06

TRI SB EQU 0x86

Pl E1 EQU 0x8C

Pl R1 EQU 0xOC

T1CON EQU 0x10

TMRLL EQU OxOE

TMR1H EQU OxOF

| NTCON EQU 0x8B

TMRLION EQU 0x00

S2 EQU 0x05

S3 EQU 0x04

ZERO EQU 0x02 ;Z flag

TXSTA EQU 0x98 ; TX status and control

RCSTA EQU 0x18 ; RX status and control

SPBRG EQU 0x99 ; Baud Rat e assi gnnment

TXREG EQU 0x19 ; USART TX Regi ster

RCREG EQU Ox1A ; USART RX Regi ster

Pl R1 EQU 0xO0C ; USART RX/ TX buffer status (enpty or full)
RCl F EQU 0x05 ; PIR1<5>; RX Buffer 1-Full O-Enmpty
X F EQU 0x04 ; PIR1<4>: TX Buffer 1-enmpty O-full
TXMODE EQU 0x20 ; TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ; RCSTA=10010000 : 8-bit, enable port, enable RX

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

BAUD EQU OxOF

; RAM

CBLOCK 0x20
TEMP
RedTEMP
Bl ueTEMP
G eenTEMP
Red1l
RedO
Bl uel
Bl ue0
G eenl
G een0
ASCl I reg

Kount 120us ; Del ay count

Kount 100us

- OXOF (19200),

(number of

0x1F (9600)

instr cycles for del ay)

Kount 1ns
Kount 10ns
Kount 100ns
Kount 1s
Kount 10s
Kount 1m
ENDC
org 0x0000
GOTO START
org 0x05
START
cal l Async_node
BANKSEL TRI SB
nmov| w B' 11000000’
nmovwf TRI SB

cTMRL Initialization

banksel T1CON
clrf T1CON
banksel | NTCON
clrf | NTCON
banksel Pl E1
clrf Pl E1
banksel Pl R1
clrf Pl R1
banksel T1CON

;clear

peri pheral

; PORTB setting for S2 and S3

; Di sabl e i nterrupt

; di sabl e peripheral interrupt

interrupt flag

255

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 256

; 1: 1 prescaler
; Ext er nal

Cl ock Source at RCO/T10SO (pin #15)

:TMRL is OFF now

movl w ' 00000010°
nmovwf T1CON
AGAI N
banksel PORTB
bcf PORTB, S2
bcf PORTB, S3
cal l del ay10ns
banksel TMVMR1H
clrf TVR1H
clrf TVR1L
bsf T1CON, TMR1ION
cal l del ay100ns
banksel T1CON
bcf T1CON, TMR1ION
banksel TVR1H
; novf TMR1H, O
; nmovwf TiH GH
novf TMRLL, O
nmovw RedTEMP
: RED is finished
call delaylOns
;. Go for Blue
banksel PORTB
bcf PORTB, S2
bsf PORTB, S3
cal l del ay10ns
banksel TVMR1H
clrf TVR1H
clrf TVR1L
bsf T1CON, TMR1ION
cal del ay100ns
banksel T1CON
bcf T1CON, TMR1ION
banksel TVMR1H
; novf TVR1H, O
; nmovw T1H GH
novf TMRLL, O
nmovwf Bl ueTEMP
cal | del ay10ns
; Go for Green
banksel PORTB
bsf PORTB, S2
bsf PORTB, S3
cal | del ay10ns
banksel TVR1H
clrf TMR1H
clrf TMR1L
bsf T1CON, TMR1ION

yRED filter is set
; VWit for the setting is done

;Clear the counting regsiter
; Tnrl now starts to increnent
; Continue counting for 100ns

:TMR1L is OFF

:Get the RED count to W

; Store the RED count to RedTEMP register

; A short delay before Bl ue reading

;:Tnrl now starts to increnent

;for 100ns
:TVMRL is OFF
: Bl ue count

;:Tnrl now starts to increnent

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

cal del ay100ns ; for 100ns

banksel T1CON

bcf T1CON, TMRLION ; TMRL is OFF
banksel TMR1H

movf TMR1H, 0

nmovwf T1H GH

novf TMRLL, O

novwf GreenTEMP ; Geen pul se count

; Di splay Preparation

; RED
movf RedTEMP, O
nmovwf TEMP
swapf TEMP, O ; SWAP upper and | ower
andl w OxOF ; Mask of f upper
cal l HTOA
nmovwf Red1
novf RedTEMP, O
andl w OxOF ; mask of upper nibble
cal | HTOA
nmovwf Red0
; Bl ue
novf Bl ueTEMP, O
nmovwf TEMP
swapf TEMP, O ; SWAP upper and | ower
andl w OxOF ; Mask of f upper
cal | HTQOA
nmovwf Bl uel
novf Bl ueTEMP, O
andl w OxOF ; mask of upper nibble
cal | HTQOA
nmovwf Bl ue0
; Geen
novf G eenTEMP, O
novwf TEMP
swapf TEMP, 0 ; SWAP upper and | ower
andl w OxOF ; Mask of f upper
cal | HTQOA
nmovwf Greenl
novf G eenTEMP, O
andl w OxOF ; mask of upper nibble
cal | HTQOA

ni bbl es --->W

ni bbl es --->W

ni bbl es --->W

257

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application

nmovwf

; di spl ay

: RED
nmovl w
cal |
nmov| w
cal |
novf
cal |
novf
cal |
nmovl w
cal |

: BLUE
nmov| w
cal |
nmovl w
cal |
novf
cal |
novf
cal |
movl w
cal |
; GREEN
nmovl w
cal |
nmovIl w
cal |
novf
cal |
novf
cal |
nmov| w
cal |
cal |

cal |
got o

G een0

'R

TXPOLL
TXPOLL
Red1, 0
TXPOLL
RedO, O
TXPOLL

TXPOLL

‘B
TXPOLL
TXPOLL
Bl uel, 0
TXPOLL
Bl ue0, 0
TXPOLL

TXPOLL

'G
TXPOLL
TXPOLL
G eenl, O
TXPOLL
Green0, 0
TXPOLL
TXPOLL
CRLF

del ayls ;1 sec delay after

AGAI N

; SUBROUTI NE SECTI ON

;1 sec del ay

;call 100 tines of 10ns del ay

Del ayls
banksel
movIl w
nmovwf

Rls cal |
decfsz
goto
return

Kount 1s

H 64'
Kount 1s
Del ay10ms
Kount 1s
Rls

; I NCLUDE OTHER SUBROUTI NES

R, G B readings

258

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 9. Timer Modules and Digital Clock Application 259

; HERE

END
;end of program

Your running the program would show the following or similar display.

“g et - Hyper T eaminal
e Edit Wiew Call Tramsfer Help

0| 5(3] s =

R:1F G:0E B:0A
R:2F G:10 B:OF

A | ke

Canrecled st detect :
s o

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

