
Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

208

Chapter 9. Timer Modules and Digital Clock Application

In 16F877, there are three timer modules: Timer0, Timer1, and Timer2 modules. The Timer0
module is a readable/writable 8-bit timer/counter consisting of one 8-bit register, TMR0. It
triggers an interrupt when it overflows from FFh to 00h.

The Timer1 module is a readable/ writable 16-bit timer/counter consisting of two 8-bit registers
(TMR1H and TMR1L). The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to
FFFFh and rolls over to 0000h. The Timer1 Interrupt is generated on overflow.

The Timer2 is an 8-bit timer with a prescaler, a postscaler, and a period register. Using the
prescaler and postscaler at their maximum settings, the overflow time is the same as a 16-bit
timer. Timer2 is the PWM time-base when the CCP module(s) is used in the PWM mode.
Detailed description and application of each timer, except Timer2 module, follow.

1. Timer 0

Timer0 module can work as a timer and a counter, however, in this section of Timer0, we use it
as a timer only. In Timer1 module, we use it, instead, as a counter. So, for counter purpose, see
the section for Timer1 module.

Timer mode is selected by clearing the T0CS bit (OPTION_REG<5>). In timer mode, the
Timer0 module will increment every instruction cycle (without prescaler). Prescaler concept
comes from the too-fast instruction cycle of the microcontroller. Think about the Timer0
register, TMR0. If the content is incremented by one every instruction (i.e., 0.2 µs with 20 MHz
crystal oscillator), it takes, from 00h to FFh ,only 255x0.2µs=51µs. Then, how many overflow
would we need, if we want to have an exact 1 second time delay? It would be over 19500
overflows. A mere 1ms delay would require about 20 overflows. Prescaler then is to give
multiple instructions cycles for the increment of TMR0 register. Prescaler value of 1:4 would
take 4 instruction cycles to increment TMR0 by 1. On the other hand, prescaler value of 1:256
requires 256 instruction cycles for the increment. With prescaler value of 1:256, one over flow
would take 255x256x0.2µs=13056µs. Therefore, with 1:256, it would take only 76 overflows to
have an exact 1 second timing. The prescaler is not readable or writable. Instead, The prescaler
assignment is controlled in software by the PSA control bit (OPTION_REG<3>). Clearing the
PSA bit will assign the prescaler to the Timer0 module.

Fig. 70 Timer0 Module for Timer Mode

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

209

Timer0 starts or stops by the T0CS bit of OPTION_REG. Once it is started, the incremental
signal comes to the TMR0 register based on the value selected for a prescaler. When TMR0
register is overflow, the T0IF flag is set to indicate the overflow. There are two ways to monitor
the overflow event of TMR0: polling the T0IF flag and Triggering the Timer0 interrupt. In our
example, we explore both the methods.

As you notice, we already talked about one register heavily, OPTION_REG register, while
explaining the Timer0 module. The main control action of OPTION_REG register is to assign
a prescaler value to Timer0 and start/stop the timer. Clearing T0CS bit starts the timer
increment based on the prescaler value, assigned by clearing PSA bit and selected by the
PS2:PS0 bits.

The only other file register for the Timer0 module operation is INTCON register. INTCON
register allows, in principle, interrupt for all interrupt enabled devices and modules. For the
polling method, we may be able to enable the global interrupt by setting the GIE bit, but disable
the T0IE bit of Timer0 module interrupt. Therefore, to use the interrupt method for Timer0
application, we have set both the bits: GIE and T0IE. If interrupt method is not used, just
clearing GIE bit would do. In polling method, the pin T0IF bit must be monitored for the
overflow of TMR0. In interrupt method, this is not necessary. However, for both the method,
once a overflow event occurs, the T0IF must be cleared by software, i.e., in the code.

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

210

INTCON REGISTER (0Bh, 8Bh, 10Bh, 18Bh) for TIMER0 Operation

GIE PEIE T0IE INTE RBIE T0IF INTF RB1F

GIE: Global Interrupt Enable bit
1 = Enables all unmasked interrupts
0 = Disables all interrupts

 T0IE: TMR0 Interrupt Enable bit
 1 = Enables the TMR0 interrupt
 0 = Disables the TNR0 interrupt

 T0IF: TMR0 Interrupt Flag bit
 1 = TMR0 register has overflowed
 (must be cleared in software)
 0 = TMR0 register did not overflow

2. Timer 0 Application 1 - LED Blinking

Since we discussed about Timer0 module and necessary special function registers, it is about the
time to apply this module. We will discuss two simple example cases of LED On and Off
program. In our previous example of LED, we could build a time delay solely based on the
number of instruction cycles for a given routine. In this section, we apply Timer0 module for
the same purpose. To do this, we apply two different approaches as announced earlier: polling
approach and interrupt approach.

Timer0 Application with Polling Approach
The polling approach is to monitor the T0IF bit of INTCON register for an overflow event in
TMR0. For a desired delay, we would come up with how many overflows are necessary based
upon the prescaler value. Here is a general procedure for the polling approach.

1. Assign the prescaler to Timer0 by clearing PSA bit (OPTION_REG<3>).
2. Select the desired prescale value by the 3 bits of OPTION_REG. (OPTION_REG<2:0>)
3.Clear TMR0 register and clear T0IF bit (INTCON<2>).
4.Turn on the timer by clearing T0CS bit (OPTION_REG<5>).
5.Poll T0IF for the timer overflow. The timer overflows when the value of TMR0 increments
from 0xFF to 0x00. This sets T0IF.
6. If T0IF is set, clear it.

Then, how do we get 1 second time delay? As we briefly discussed above, with 0.2µs of one
instruction cycle time, we need 76 overflows of TMR0 when 1:256 prescaler value is selected.
In the sample program, we will turn on an LED for 1 second while turning off the other LED,
and vice versa, using the timer. Let's build the 1 second delay routine. The strategy is to
decrease a temporary counting register COUNT from the magic number 76 every time the TMR0
overflow occurs. The subroutine expires when the COUNT reduces to zero, which will turn into

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

211

one second lapse of time. Before returning to the main program, we have to clear the T0IF bit so
that the TMR0 is again incremented by one.

;DELAY SUBROUTINE for 1 Second delay
DELAY1s

banksel count
movlw 0x4c ;Count=76 for 1 second to expire
movwf count

over btfss INTCON, T0IF ;Tmr0 overflow?
goto over
bcf INTCON, T0IF ;reset/clear when done
decfsz count
goto over
return

Two LEDs are connected to RD0 and RD1, respectively.

Fig. 71 PIC 16F877 connection to two LEDs

The code listed below is the full program except the 1 second time delay we already discussed.

;tmr0poll.asm
;
;This program uses TMR0 module with software polling
;to give exact 1 s delay of LED On and Off
;

list P = 16F877

STATUS EQU 0x03
TMR0 EQU 0x01 ;Timer0 register
INTCON EQU 0x0B ;
OPTION_REG EQU 0x81 ;Option Register

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

212

T0IF EQU 0x02
PORTD EQU 0x08
TRISD EQU 0x88
LED1 EQU 0x01 ;LED1 is connected to PORTD<1>
LED0 EQU 0x00 ;and PORTD<0>

CBLOCK 0x20 ; RAM AREA for USE at address 20h
count
ENDC ;end of ram block

;
;
;===

org 0x0000
goto START

;==
org 0x05

START
banksel INTCON
clrf INTCON ;int disabled
clrf TMR0
banksel TRISD
clrf TRISD ;PORTD<7-0>=outputs
movlw 0xC7 ;11000111
banksel OPTION_REG ;pre-scaler at 1:256
movwf OPTION_REG ;11000111
banksel TMR0 ;Timer0 Starting
clrf TMR0 ;TMR0=0

;Determine the time count
monitor

bsf PORTD,LED1 ;led on 1 second
bcf PORTD,LED0
call delay1s ;1 second time delay by TMR0
bcf PORTD,LED1 ;led off 1 second
bsf PORTD,LED0
call delay1s
goto monitor ;Keeping on

;DELAY SUBROUTINE for 1 Second delay
;HERE
;

END

Timer Application with Timer0 Interrupt
The second approach is to use the Timer0 interrupt. Even though we have not discussed much
on interrupt, time to time, this subject will pop up, and we will discuss the subject as need basis.
The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This
overflow sets bit T0IF (INTCON<2>). The interrupt can be triggered by setting bit T0IE
(INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service
routine before re-enabling this interrupt.

The Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) all un-masked interrupts or

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

213

disables (if cleared) all interrupts. Individual interrupts can be disabled through their
corresponding enable bits in the INTCON register. The GIE bit is cleared on reset. The “return
from interrupt” instruction, RETFIE, exits the interrupt routine as well as sets the GIE
bit, which allows any pending interrupt to execute.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the
return address is pushed into the stack and the PC(Program Counter) is loaded with 0004h. In
other words, an interrupt event occurs, the execution of a main program is suspended and the
execution starts from the instruction originating at 0004h. Therefore, any routine residing from
the 0004h to handle interrupt is usually called an interrupt handler or interrupt service routine.
Once in the interrupt service routine the source(s) of the interrupt can be determined by polling
the interrupt flag bits. Generally the interrupt flag bit(s) must be cleared in software before re-
enabling the global interrupt to avoid recursive interrupts.

Interrupt latency is defined as the time from the interrupt event (the interrupt flag bit gets set) to
the time that the instruction at address 0004h starts execution (when that interrupt is enabled).
For synchronous interrupts (typically internal), the latency is 3 instruction cycles. For
asynchronous interrupts (typically external), the interrupt latency will be 3 - 3.75 instruction
cycles. The exact latency depends upon when the interrupt event occurs in relation to the
instruction cycle. In most application, the interrupt latency does not give much delay.
Moreover, we have no control over this. Accept!

So, for Timer0 application, we have to have the interrupt handler residing at 0004h. This
handler will decide what we do (or what we want the 16F877 controller to do) when the Timer0
interrupt event occurs by the TMR0 overflow. What we do is, whenever there is interrupt (this
case only from the Timer0 module of TMR0 overflow), that we increase the COUNT. That is
all. The handler does not care what the current value of COUNT is. The clearing of COUNT
and checking the COUNT is the job of 1 second delay subroutine.

;Interrupt Handler for Timer0 interrupt
ORG 0x0004 ;Interrupt Vector address
incf COUNT ;increase COUNT
bcf INTCON, T0IF ;clear the interrupt flag for

;another interrupt
retfie ;return from Interrupt

Since the COUNT is accessed by any part of the code, the 1 second time delay subroutine must
check the value of COUNT starting from 0. When the COUNT becomes 76 (or 4Ch), the
subroutine expires and the 1 second time delay is achieved. The subroutine does not have to
take care of clearing T0IF; it's done by the interrupt handler. When the COUNT becomes 76 and
the subroutine expires, the COUNT must be cleared for another 1 second counting.

;subroutine delay1s
;
delay1s

banksel COUNT
btfss COUNT, 0x06 ;check if COUNT increased to 0x4c

;01001100 bit 6
goto delay1s

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

214

int1s btfss COUNT, 0x03 ;bit 3
goto int1s

int1s2
btfss COUNT, 0x02 ;bit 2
goto int1s2

;now 1 sec expired
clrf COUNT ;COUNT=0
return

The example code, without including the subroutine, is listed below.

;tmr0int.asm
;
;This program uses TMR0 module with interrupt enabled
;to give exact 1 s delay
;

list P = 16F877

STATUS EQU 0x03
TMR0 EQU 0x01 ;Timer0 module
INTCON EQU 0x0B ;Intcon
OPTION_REG EQU 0x81 ;Option Register
PORTD EQU 0x08
TRISD EQU 0x88
LED1 EQU 0x01 ;LED is connected to PORTD<1>
LED0 EQU 0x00
T0IF EQU 0x02 ;tmr0 overflow flag
T0IE EQU 0x05 ;Tmr0 interrupt enable/disable
ZERO EQU 0x02 ;Zero flag on STATUS (1: zero)
GIE EQU 0x07 ;Global Interrupt

CBLOCK 0x20 ; RAM AREA for USE at address 20h
count
ENDC ;end of ram block

;
;
;===

org 0x0000
goto START

;==
;Interrupt Handler

org 0x0004 ;Interrupt Vector
incf COUNT ;increase COUNT
bcf INTCON, T0IF ;clear the overflow flag
retfie ;return from Interrupt

START clrf COUNT ;starting from COUNT=0
banksel INTCON
bsf INTCON, GIE ;Global Interrupt Enable
bsf INTCON, T0IE ;tmr0 interrupt enabled
clrf TMR0

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

215

banksel TRISD
clrf TRISD ;PORTD<7-0>=outputs
movlw 0xC7 ;pre-scaler at 256
banksel OPTION_REG
movwf OPTION_REG ;Timer0 starts

; Is count decreased to 0? Then 1 second passed.
; timecount is for how many seconds to pass.
;Determine the time count
ONOFF

banksel PORTD
bsf PORTD, LED1 ;LED1 ON
bcf PORTD, LED0
call delay1s
banksel PORTD
bcf PORTD, LED1 ;LED1 off
bsf PORTD, LED0
call delay1s
goto ONOFF ;repeat

;subroutine delay1s
;--

END

After running the program, you may be tempted to apply it to a digital clock. Several versions of
digital clock (or just a timer watch) are discussed before the final version, displayed on an LCD
module.

3. Timer0 Application 2 –DIGITAL CLOCK

In the application of Timer0 module, we will explore the world of digital clock. First two
versions are aimed to display the time on a PC monitor; one (CLOCK1) as a timer watch and the
other (CLOCK2) as a digital clock with time setting allowed using a keyboard. The second two
versions are displayed on a LCD module; one (CLOCK3) as a timer watch and the other
(CLOCK4) as a digital clock with time setting using four buttons. In CLOCK4, another interrupt
event, RB0/INT external interrupt, is utilized. All through the version, 1 second time delay is
implemented using the polling approach.

CLOCK1-Display on PC monitor
This version of digital clock is a timer watch displayed in the format of HH:MM:SS for Hour,
Minute, and Second display. The timer starts from 00:00:00 and ticks as an actual timer watch.
Let's discuss the strategy. As in the LED On/Off program, when the COUNT reaches at 76, the
Second must be increased by one. Then, the number indicating the current Second, in hex
number, must be converted to a 2-digit decimal number. These decimal digits will be displayed
occupying the two slots assigned for each time unit.

So we first need a general routine which convert a 1-byte hex number to a 2-digit decimal
number. In other words, a single bye hex number, say, 16h which is 22 in decimal must be
converted to two 8-byte number in decimal number system.

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

216

16h: 0001 0110 ---> 0000 0010 (Upper Byte) and 0000 0010 (Lower Byte)

For Hour, since we can have from 00 to 23, the maximum hex number for the time unit is HH=
17h=0001 0111. If put the upper nibble to hh1hex (a variable in the assembly code) and the
lower nibble to hh0hex, we would have:
HH=00010111 ---->hh1dex=00000001 and hh0hex=00000111

If the bit0 of hh1dex is 1, it corresponds to 16. Therefore, the upper decimal digit would be
increased by 1, and the lower decimal digit must be increased by 6.

Then, the hh0dex must be examined with the additional increment of 6. In this example, the new
hh0hex becomes 00001101= 0Dh. Then, what would be the maximum value of hh0hex? Since
the maximum value hh0hex can get is 00001111=0Fh, it could reach above 20 but not above 30.
Therefore, we have to check if hh0hex is greater than 20. In the example it's not above 20. So
we check if the value is above 10, then. Since 0Dh is bigger than 9we have to subtract 10 from
0D, while adding the carry to the upper digit, hh1dec. In other words, when hh0hex is bigger
than 19we increase hh1dec by two and subtract 20 from hh0hex. The resultant hh0hex becomes
hh0dec. If hh0hex is not bigger than 19 but bigger than 9, then we increase hh1dec by 1 and
subtract 10 from hh0hex. This hh0hex becomes hh0dec, the lower digit of the decimal number.

OK. Let's do the math again for a hex number to a 2-digit decimal number conversion. This
algorithm is the basis for a hex number, increased by the 1 second time delay, to 2-digit decimal
number display.

Example 1: HH=13h=19d=0001 0011.

(1) hh1hex = 0000 0001 (upper nibble)
(2) hh0hex = 0000 0011 (lower nibble)
(3) Since the Bit0 of hh1hex is 1 (i.e., 16): increase hh1dec by 1 (hh1dec=1

now) and increase hh0hex by 6. hh0hex=0000 1001 now.
(4) Since hh0hex is not greater than 9, (it is 9), hh0hex becomes hh1dec. So

hh1dec = 9 now.
(5) Finally, the 2 digits of decimal number is: 1 (by hh1dec) 9 (by hh0dec)
(6) Pint hh1dec followed by hh0dec, 19, to indicate the 19th hour

Example 2: MM (for Minute) = 3Bh=59d = =0011 1011
(1) mm1hex = 0000 0011 (upper nibble)
(2) mm0hex = 0000 1011 (lower nibble)
(3) Since Bit 0 of mm1hex is 1 (i.e. 16x20=16d), increase mm1dec by 1 and

mm0hex by 6. So, currently, mm1dec=1, and the new value of mm0hex =
0000 1011 + 0000 0110 = 0001 0001 = 17d

(4) Since Bit 1 of mm1hex is 1 (i.e., 16x21=32d) increase mm1dec by 3 and
mm0hex by 2. Therefore, the current value of mm1dec = 4 and the new
value of mm0hex is 19d.

(5) Now checking mm0hex indicates that it is smaller than 20 and bigger than 9.
So it would increase mm1dec by 1 and the resultant mm0hex after being

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

217

subtracted by 10 is 9. Finally, mm1dec=5 and mm0dec =9.
(6) Display the two digits, 5 and 9, to indicate the 59th minute.

Example 3: SS (for Second) = 1Fh=0001 1111 = 31d

(a) ss1hex = 0000 0001 (upper nibble)
(b) ss0hex = 0000 1111 (lower nibble)
(c) The bit0 of ss1hex is 1, therefore, 16x20=16, increase ss1dec by 1 and

ss0hex by 6. So the current value of ss1dec =1 and the new value of
ss0hex is 15d+ 6d= 21d.

(c) Since hh0hex is bigger than 19, increase ss1dec by 2 to 3 and subtract 20
from hh0dex, which results in 1d as ss0dec.

(d) Therefore, the final values for ss1dec and ss0dec are 3 and 1,
respectively.

(e) Display ss1dec followed by ss0dec to indicate the 31th second.

Since the maximum decimal number is 59, and it's hex equivalent is 3Bh, there is no need to
check the 2nd or higher bit of hh1hex, mm1hex, or ss1hex. In other words, all we have to do
is the check the 0th and 1st bits of the upper nibble. So the following is the subroutine to convert
a 1-byte hex number to a 2 digit decimal number.

;===h2d2====
;1 byte hex to 2 digit DECIMAL number
;for SS second (MM minute, or HH hour)
;The hex number is stored in hms before calling this subroutine
h2d2
;convert 1-byte hex number to 2 digit decimal number

movf hms,0 ;W<--hms
andlw 0x0F ;lower nibble
movwf hms0hex ;hms0hex
movf hms,0
movwf hmstemp
swapf hmstemp,0
andlw 0x0F ;upper nibble
movwf hms1hex

;
clrf hms1dec
clrf hms0dec
btfss hms1hex,0x01 ;Bit1 check (32)
goto b0check
incf hms1dec ;hms1dec = hms1dec + 3
incf hms1dec
incf hms1dec ;
incf hms0hex ;hms0hex = hms0hex +2
incf hms0hex

b0check
btfss hms1hex,0x00 ;Bit0 check (16)
goto hms0check
incf hms1dec ;hms1dec=hms1dec + 1
incf hms0hex
incf hms0hex
incf hms0hex

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

218

incf hms0hex
incf hms0hex
incf hms0hex ;hms0hex = hms0hex + 6

hms0check
bcf HILO20,0x00 ;index for >19 condition
movf hms0hex,0 ;check if it's bigger than 20(d)
call TWENTY
btfss HILO20,0x00
goto hms0check2
movlw 0x14 ;if >19, subtract 20
subwf hms0hex
movf hms0hex,0
movwf hms0dec ;then hms1dec=hms1dec+2
incf hms1dec
incf hms1dec ;two decimal digits
return

hms0check2
bcf HILO10,0x00 ;if <20, the check if >9
movf hms0hex,0 ;then check >10
call TEN
btfss HILO10,0x00
goto less ;less than <10
movlw 0x0A
subwf hms0hex ;if >9
movf hms0hex,0 ;subtract 10
movwf hms0dec
incf hms1dec ;hms1dec=hms1dec+1
return

less movf hms0hex,0 ;if <9 then
movwf hms0dec ;keep it to ss0dec
return

The subroutine for TEN (checking if a number is greater than or equal to 10) has been discussed
before. The two subroutines, TEN and TWENTY (checking if a number is greater than or equal to
20), are listed below. For the new subroutine, TWENTY, read the comment lines very carefully to
understand the strategy.

;subroutine to check >=10 or <10 ==================
; >=10 ---> HILO10=1
;<10 --->HILO10=0
; 4 3210
;9 0 1001
;10 0 1010
;11 0 1011
;12 0 1100
;13 0 1101
;14 0 1110
;15 0 1111
;16 1 0000
TEN

banksel HILO10
clrf HILO10
movwf TENtemp
btfss TENtemp, 0x04 ;4th bit

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

219

goto thirdbit
bsf HILO10, 0x00
return

thirdbit
btfss TENtemp, 0x03 ;3rd bit
return
btfss TENtemp, 0x02
goto nextbit
bsf HILO10,0x00
return

nextbit
btfss TENtemp,0x01
return
bsf HILO10, 0x00
return

;==
;subroutine to check >=20 or <10 ==================
; >=20 ---> HILO20=1
;<20 --->HILO20 =0
;20d = 0001 0100 b4& b2=1
;21 0001 0101
;22 0001 0110
TWENTY

banksel HILO20
clrf HILO20
movwf Twentytemp
btfss Twentytemp, 0x04 ;4th bit
return
btfss Twentytemp, 0x02 ;2nd bit
return
bsf HILO20,0x00
return

Now our discussion must go to increasing the Second, and if Second reaches 60 that value must
be changed to 00 while increasing the Minute by 1. Similar measure has to be applied to Minute
and to Hour. When Hour becomes 24, then it should clear every time unit so that it restarts from
00:00:00. Therefore, after we call 1 second time delay (which is exactly the same routine we
used for the LED On/Off using the polling approach) we increase Second (represented by SS in
the code) by one. Then we have to check if SS is 60. 60 in decimal is 3C in hexadecimal and
00111100 in binary.

To make sure the content of SS is exactly 00111100, the easiest way to do so is to apply XOR
operation with SS. The result of XOR operation of SS with 00111100 is zero only when the
content of SS is 00111100. All other values will produce at least one set bit, thus making the
result non-zero. The zero or non-zero result can be checked by the ZERO flag of the STATUS
register. The tactic applies to find the content of Minute (represented by MM) for 60. A similar
measure can solve for Hour (represented by HH) for 24. Examine closely the following code
for the main timer watch program.

call delay1s ;1 sec elapsed
incf SS
movf SS,0
clrf STATUS

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

220

xorlw B'00111100' ;if SS=60(d) or 3C or 0011 1100
btfss STATUS, ZERO
goto again ;if <60 continue

clrf SS ;if SS=60, then SS=0
incf MM ;MM=MM+1
movf MM,0
clrf STATUS
xorlw B'00111100'
btfss STATUS,ZERO
goto again ;<60, then continue

clrf MM ;if MM=60, then MM=0
incf HH ;HH=HH+1
movf HH,0
clrf STATUS

;check 24hour 24d = 00011000
xorlw B'00011000'
btfss STATUS,ZERO
goto again
clrf STATUS ;if HH=24
call clear ;clear all the time units (HH=MM=SS=00)
goto again

The following example code contains all the necessary components including all the subroutines.
A complete listing is necessary this time to show the algorithmic process for the very first step
for a digital clock. The code will display the time in HH:MM:SS format starting from 00:00:00
like a timer watch. Read comments very carefully to better understand the code.

;clock1.asm
;(timer watch)
;This program uses TMR0 module with interrupt enabled
;to give exact 1 s delay for
;HH:MM:SS format
;Displayed on a PC monitor
;

list P = 16F877

STATUS EQU 0x03
CARRY EQU 0x00
TMR0 EQU 0x01 ;Timer0 module
INTCON EQU 0x0B ;Intcon
OPTION_REG EQU 0x81 ;Option Register
T0IF EQU 0x02 ;tmr0 overflow flag
T0IE EQU 0x05 ;Tmr0 interrupt enable/disable
ZERO EQU 0x02 ;Zero flag on STATUS (1: zero)
GIE EQU 0x07 ;Global Interrupt

TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or
full)

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

221

RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port,

;enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)

CBLOCK 0x20 ; RAM AREA for USE at address 20h
ASCIIreg
count
HHset
MMset
SSset

Hms ;general variables for HH, MM, and SS
hms1hex
hms0hex
hms1dec
hms0dec
hmstemp

HH
HHtemp
HH1
HH0
HH1hex
HH0hex
hh1dec
hh0dec
MM
MMtemp
MM1
MM0
mm1hex
mm0hex
mm1dec
mm0dec
SS
SStemp
SS1
SS0
ss1hex
ss0hex
ss1dec
ss0dec
HILO10
HILO20
TENtemp
TWENTYtemp

ENDC ;end of ram block
;
;===

org 0x0000
GOTO START

;==
org 0x05

START

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

222

banksel COUNT
clrf COUNT ;starting from COUNT=0
banksel INTCON
bcf INTCON ; Interrupt Disabled
clrf TMR0
movlw 0xC7 ;pre-scaler at 255
banksel OPTION_REG
movwf OPTION_REG

call Async_mode ;For display to PC monitor
;

call clear ;clear every file register (HH,MM,SS all 0)

again
movf SS,0
movwf hms
call h2d2 ;conversion of SS into 2 –digit decimal number
movf hms1dec,0 ;ss1dec & ss0dec
movwf ss1dec
movf hms0dec,0
movwf ss0dec

movf MM,0
movwf hms
call h2d2 ;conversion of MM to mm1dec & mm0dec
movf hms1dec,0
movwf mm1dec
movf hms0dec,0
movwf mm0dec

movf HH,0 ;conversion of HH to hh1dec & hh0dec
movwf hms
call h2d2
movf hms1dec,0
movwf hh1dec
movf hms0dec,0
movwf hh0dec

call clockdisplay ;display them in HH:MM:SS format

call delay1s ;clock ticking here for 1 sec
incf SS ;increase SS
movf SS,0
clrf STATUS
xorlw B'00111100' ;if SS=60(d) or 3C or 0011 1100
btfss STATUS, ZERO
goto again ;if SS<60 do the conversion and display

clrf SS ;if SS=60, SS=0, and MM=MM+1
incf MM
movf MM,0
clrf STATUS
xorlw B'00111100' ;
btfss STATUS,ZERO
goto again ;if MM<0, do the conversion and display

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

223

clrf MM ;if MM=60, MM=0, and HH=HH+1
incf HH
movf HH,0
clrf STATUS

;check 24hour 24d = 00011000
xorlw B'00011000'
btfss STATUS,ZERO ;if HH<23, do the conversion and display
goto again
clrf STATUS
call clear ;if HH=24, HH=MM=SS=0, start again
goto again

;SUBROUTINES
;===h2d2====
;1 byte hex to 2 digit DECIMAL number
; for SS second (MM minute, or HH hour)
h2d2
;convert 1-byte hex number to 2 digit decimal number

movf hms,0 ;W<--hms
andlw 0x0F ;lower nibble
movwf hms0hex ;hms0hex
movf hms,0
movwf hmstemp
swapf hmstemp,0
andlw 0x0F ;upper nibble
movwf hms1hex

;
clrf hms1dec
clrf hms0dec
btfss hms1hex,0x01 ;B1 check
goto b0check
incf hms1dec
incf hms1dec
incf hms1dec ;32(d)
incf hms0hex
incf hms0hex

b0check
btfss hms1hex,0x00 ;B0 check
goto hms0check
incf hms1dec ;16(d)
incf hms0hex
incf hms0hex
incf hms0hex
incf hms0hex
incf hms0hex
incf hms0hex

hms0check
bcf HILO20,0x00
movf hms0hex,0 ;check if it's bigger than 20(d)
call TWENTY
btfss HILO20,0x00
goto hms0check2
movlw 0x14
subwf hms0hex
movf hms0hex,0
movwf hms0dec
incf hms1dec

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

224

incf hms1dec ;two decimal digits
bcf HILO20,0x00
return

hms0check2
bcf HILO10,0x00
movf hms0hex,0 ;then check >10
call TEN
btfss HILO10,0x00
goto less ;less than <10
movlw 0x0A
subwf hms0hex
movf hms0hex,0
movwf hms0dec
incf hms1dec
return

less movf hms0hex,0
movwf hms0dec ;so keep it to ss0dec
return

;end of h2d2 subroutine
;
;DELAY SUBROUTINE for 1 Second delay
;
DELAY1s

banksel count
movlw 0x4c ;Count=76 for 1 second to expire
movwf count

over btfss INTCON, T0IF ;Tmr0 overflow?
goto over
bcf INTCON, T0IF ;reset
decfsz count
goto over
return

;--
;RX TX Initialization with Asyc Mode
;Async_mode Subroutine
Async_mode

banksel SPBRG
movlw baud ;B'00001111' (19200)
movwf SPBRG
banksel TXSTA
movlw TXMODE ;B'00100000' Async Mode
movwf TXSTA
banksel RCSTA
movlw RXMODE ;B'10010000' Enable Port
movwf RCSTA
return

;RS232 TX subroutine ============
TXPOLL

banksel PIR1
btfss PIR1, TXIF ; Check if TX buffer is empty
goto TXPOLL
banksel TXREG
movwf TXREG ; Place the character to TX buffer

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

225

return
;-------------------------
RXPOLL

banksel PIR1
btfss PIR1, RCIF ;RX Buffer Full? (i.e. Data Received?)
goto RXPOLL
banksel RCREG
movf RCREG,0 ;received data to W
return

;
;To send CR ===============
CR

movlw H'0d' ;CR
call TXPOLL
return

;To send CR and LF ===============
CRLF

movlw H'0d' ;CR
call TXPOLL
movlw H'0a' ;LF
call TXPOLL
return

;subroutine to check >=10 or <10 ==================
; >=10 ---> HILO10=1
;<10 --->HILO10=0
TEN

banksel HILO10
clrf HILO10
movwf TENtemp
btfss TENtemp, 0x04 ;4th bit
goto thirdbit
bsf HILO10, 0x00
return

thirdbit
btfss TENtemp, 0x03 ;3rd bit
return
btfss TENtemp, 0x02
goto nextbit
bsf HILO10,0x00
return

nextbit
btfss TENtemp,0x01
return
bsf HILO10, 0x00
return

;subroutine to check >=20 or <10 ==================
; >=20 ---> HILO20=1
;<20 --->HILO20 =0
;20d = 0001 0100 b4& b2=1
TWENTY

banksel HILO20
clrf HILO20
movwf Twentytemp
btfss Twentytemp, 0x04 ;4th bit
return
btfss Twentytemp, 0x02 ;2nd bit
return

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

226

bsf HILO20,0x00
return

;
;subroutine CLOCKDISPLAY
clockdisplay

banksel hh1dec
movlw 0x30 ;To all digits add 30h to convert to ASCII
addwf hh1dec
addwf hh0dec
addwf mm1dec
addwf mm0dec
addwf ss1dec
addwf ss0dec

movf hh1dec,0
call TXPOLL
movf hh0dec,0
call TXPOLL
movlw ':'
call TXPOLL ;:

movf mm1dec,0
call TXPOLL
movf mm0dec,0
call TXPOLL
movlw ':'
call TXPOLL ;:

movf ss1dec,0
call TXPOLL
movf ss0dec,0
call TXPOLL
call CR
return

;==
;clock clear-reset subroutine
clear

clrf STATUS
banksel SS
movlw 0x00 ;W=0
clrf HH
clrf MM
clrf SS

clrf hh1hex
clrf hh0hex
clrf hh1dec
clrf hh0dec

clrf mm1hex
clrf mm0hex
clrf mm1dec
clrf mm0dec

clrf ss1hex
clrf ss0hex
clrf ss1dec

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

227

clrf ss0dec
clrf hms
return

END
;END of the code

When you run the code, you should see a screen shown below on your monitor.

CLOCK2 - Time Setting with PC Monitor Display
Now let's make the timer watch as an actual digital clock displayed on the same monitor. To do
this we have to provide one important feature: Time setting. Allowing a user (or you) to set the
time before the clock starts involves more things than one can imagine. First, we have to receive
keyed-in numbers for Hour, Minute, and, Second, respectively. Since the numbers entered are in
decimal, they should be converted to hexadecimal numbers. These hex numbers are then
supplied to the conversion subroutine to convert back to 2-digit decimal numbers for clock
display. Why can't we use the keyed-in decimal numbers directly to display the time? Why do
we have to reconvert the converted hex number from a decimal number to a decimal number for
clock display?

Think about the following situation. For simplicity of argument, consider only the time unit of
Second. In other words, only Second is allowed to be adjusted by a user. If you type 45 using
your keyboard for Second as the starting time for your digital clock. Each digit could become the
first and second digit for Second: ss1dec and ss0dec as used in the above timer watch
program. Then, clock starts from there. So the next clock display after 1 second time delay,
hopefully, would be 00:00:46.

However this wishful thinking does not work. It's because after 1 second time delay, SS (the
representative variable for Second) would be increased by 1. However, the SS does not contain
the would-be starting value of 45, since we directly have the ss1dec and ss0dec from the
number 45. So, we have to convert to SS from ss1dec and ss0dec for the starting value.
That's why we plan to convert the keyed-in decimal numbers to an 8-byte hex number (say, SS,
in this case). Conversion from SS to ss1dec and ss0dec is already covered by using the
h2d2 subroutine.
Therefore the additional parts we have to have to the previous code of timer watch are as

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

228

follows:
a. Reading keyed-in decimal number for Hour, Minute, and Second.
b. Conversion of the keyed-in decimal numbers to 1-byte hex numbers (to HH, MM, and SS)
c. Starting the clock using them as starting values.

We need a detailed discussion on the first two parts. The format we want to use for time setting
is that we type HH: as a prompt for a user to set the Hour. At the next line, we prompt MM: for
the Minute. And at the third line would prompt SS: for the Second. Then at the fourth line, the
clock with the set values would start.
Reading the keyed-in decimal numbers is rather an easy task. The serial reception we once
studied can be easily applied to receive any keyed-in characters. The following is the subroutine
for keyed-in reading for time setting, timeset. It does not involve much complexity.

;subroutine
;time set prompt and reception
timeset

call CRLF ;move to the next line as the starter
movlw 'H'
call TXPOLL
movlw 'H'
call TXPOLL
movlw ':'
call TXPOLL ;HH: as typed

call RXPOLL ;read the first digit, hh1dex
call TXPOLL ;echo the keyed-in number

;subwf f - W --->d
movwf hh1hex
movlw 0x30
subwf hh1hex ;convert from ASCII to hex number

call RXPOLL ;read the second digit, hh0hex
call TXPOLL ;echo
movwf hh0hex
movlw 0x30 ;hh0hex=hh0hex-30h
subwf hh0hex ;conversion to hex from ASCII

call CRLF ;move to the next line

movlw 'M'
call TXPOLL
movlw 'M'
call TXPOLL
movlw ':'
call TXPOLL ;MM: prompted
call RXPOLL ;read the first digit mm1hex
call TXPOLL ;echo
movwf mm1hex
movlw 0x30
subwf mm1hex ;ASCII to HEX

call RXPOLL ;read the second digit, mm0hex
call TXPOLL ;echo
movwf mm0hex

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

229

movlw 0x30 ;ASCII --> HEX
subwf mm0hex

call CRLF ;move to the next line

movlw 'S'
call TXPOLL
movlw 'S'
call TXPOLL
movlw ':'
call TXPOLL ;SS: prompted
call RXPOLL ;ss1hex
call TXPOLL ;echo
movwf ss1hex
movlw 0x30
subwf ss1hex ;To HEX from ASCII

call RXPOLL ;ss0hex
call TXPOLL ;echo
movwf ss0hex
movlw 0x30
subwf ss0hex

call CRLF ;move to the next line
return

;RS232 TX and RX subroutines ============
TXPOLL

banksel PIR1
btfss PIR1, TXIF ; Check if TX buffer is empty
goto TXPOLL
banksel TXREG
movwf TXREG ; Place the character to TX buffer
return

;-------------------------
RXPOLL

banksel PIR1
btfss PIR1, RCIF ;RX Buffer Full? (i.e. Data Received?)
goto RXPOLL
banksel RCREG
movf RCREG,0 ;received data to W
return

The next thing we will discuss is the conversion of the keyed-in decimal numbers to 1-byte hex
numbers (to HH, MM, and SS). The objective of the discussion is how to convert the 2-digit
decimal numbers, for example hh1hex and hh0hex, to the 1-byte hex number HH.

Let's start with an example for HH (and hh1hex and hh0hex). Since the maximum number we
get from the upper (or 10) digit hh1hex is 2, i.e., 0000 0010, therefore 0000 0010 should be
interpreted as 20d (or 14h) while 0000 0011 as 10d (or 0Ah). The sum of this interpreted
number and the lower (or unit) digit hh0hex would make HH, the hex number equivalent.

We can get a general interpretation rule of the upper digit as follows: ∑ ⋅⋅
=

7

0
102

n

n
nk , where kn is

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

230

the binary value of the nth bit of the digit. Of course, since we are dealing with a digital clock,

For MM (and mm1hex and mm0hex) and SS (and ss1hex and ss0hex), since the maximum
number for the upper digit mm1hex (or ss1hex) is 5, i.e., 0000 0101, the number n goes only
to 2 from the formula.

By the way, a number 0000 0101, using the formula above, is interpreted to:

50102110201021102 2102

0
=⋅⋅+⋅⋅+⋅⋅=∑ ⋅⋅

=n

n
nk

Then, how do we apply this formula for upper digit in the 17F877 coding? Directly applying
the formula to a code is too luxurious to the microcontroller. However, we can indirectly apply
the formula by testing kn, the nth bit of the digit and multiplying by (10x2n). The following
subroutine, d22h, is to apply the formula to convert a 2-digit decimal number into a 1-byte hex
number. After examining the subroutine, try to make the subroutine simpler by making a part of
the code as another subroutine, and apply the same procedure to Hour, Minute, and Second
processing.

;subroutine
;conversion of decimal two digits to 1-byte hex number
d22h
;HOUR FIRST

movlw 0x00
btfss hh1hex,0x01 ;bit1 check for HOUR
goto hnext1
addlw 0x14 ;if bit1=1, +20

hnext1
btfss hh1hex,0x00 ;bit0 check
goto hnext2
addlw 0x0A ;if bit0=1, +10

hnext2
movwf HH
movf hh0hex,0 ;+hh0hex the lower digit
addwf HH ;total sum

;end of HH calculation

;MINUTE NEXT
movlw 0x00
btfss mm1hex,0x00 ;bit0 check MINUTE
goto mnext1
addlw 0x0A ;+10

mnext1
btfss mm1hex,0x01 ;bit1 check
goto mnext2
addlw 0x14 ;+20

mnext2
btfss mm1hex, 0x02 ;bit2 check
goto mnext3
addlw 0x28 ;+40

mnext3
movwf MM
movf mm0hex, 0

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

231

addwf MM ;total sum in hex

;For SECOND
movlw 0x00
btfss ss1hex,0x00 ;bit0 check for SECOND
goto snext1
addlw 0x0A ;+10

snext1
btfss ss1hex,0x01 ;bit1 check
goto snext2
addlw 0x14 ;+20

snext2
btfss ss1hex, 0x02 ;bit2 check
goto snext3
addlw 0x28 ;+40

snext3
movwf SS
movf ss0hex, 0
addwf SS ;total sum in hex

return

The following code is the main part of the CLOCK2 program. No subroutine is listed. Also, the
block of variables (registers) defined from the address 20h is also omitted. The
CBLOCK...ENDC part is the same as the one we used in CLOCK1 program.

; clock2.asm
;
;Clock program
;Time setting allowed
;Display format of HH:MM:SS
;Displayed on a PC monitor
;

list P = 16F877

STATUS EQU 0x03
CARRY EQU 0x00
TMR0 EQU 0x01 ;Timer0 module
INTCON EQU 0x0B ;Intcon
OPTION_REG EQU 0x81 ;Option Register
T0IF EQU 0x02 ;tmr0 overflow flag
T0IE EQU 0x05 ;Tmr0 interrupt enable/disable
ZERO EQU 0x02 ;Zero flag on STATUS (1: zero)
GIE EQU 0x07 ;Global Interrupt

TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or
full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

232

TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port,

; enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)

CBLOCK 0x20 ; RAM AREA for USE at address 20h
;NOTE THAT THIS PORTION MUST BE COPIED FROM CLOCK1.ASM CODE
;FOR A SUCCESSFUL COMPILING

ENDC ;end of ram block
;
;
;
;===

org 0x0000
GOTO START
org 0x05

;==

START
banksel INTCON
clrf INTCON ;int disabled
clrf TMR0
banksel OPTION_REG ;pre-scaler at 256
movwf OPTION_REG ;11000111
banksel TMR0
clrf TMR0

call Async_mode ;RX-232
;

call clear ;clear every file register
begin
;display clock reset prompt

call timeset ;time adjustment
;
;conversion of decimal two digits to 1-byte hex number

call d22h
;
again

movf SS,0
movwf hms
call h2d2
movf hms1dec,0
movwf ss1dec
movf hms0dec,0
movwf ss0dec

movf MM,0
movwf hms
call h2d2
movf hms1dec,0
movwf mm1dec
movf hms0dec,0
movwf mm0dec

movf HH,0
movwf hms
call h2d2

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

233

movf hms1dec,0
movwf hh1dec
movf hms0dec,0
movwf hh0dec

call clockdisplay
call delay1s
incf SS
movf SS,0
clrf STATUS
xorlw B'00111100' ;if SS=60(d) or 3C or 0011 1100
btfss STATUS, ZERO
goto again

clrf SS
incf MM
movf MM,0
clrf STATUS
xorlw B'00111100'
btfss STATUS,ZERO
goto again

clrf MM
incf HH
movf HH,0
clrf STATUS

;check 24hour 24d = 00011000
xorlw B'00011000'
btfss STATUS,ZERO
goto again
clrf STATUS
call clear
goto again

;SUBROUTINES HERE
;

END

When we run the CLOCK2 program, after setting the time, for example, HH=08, MM=52,
SS=04, we would see the following screen on the monitor.

CLOCK3 - LCD Display Version
The next version is closer to a digital clock, or rather a timer watch displayed on a LCD module.

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

234

We use the 20x4 LCD module we already used for the previous example programming. For this
timer watch example, we will stick to 4-bit interface configuration. If you lost most of the gains
on LCD, go back to the proper section and code for better understand this section.

The final result of CLCOK3 on LCD is to display HH:MM:SS format display without time
setting features. Therefore, it would start from 00:00:00 at the second line of the LCD screen.
The first line of the LCD would display 'PIC CLOCK' as a logo.

Since we already have necessary subroutines, the primary task is to send the calculated digits of
time units to LCD not to the PC monitor. Therefore, we have to change the subroutine
clockdisplay which is for PC monitor to clockLCDdisplay for LCD. Basically this
change comprises most of the changes we need for displaying on LCD. All the other
subroutines are the same as we used from CLOCK1 and CLOCK2. Remember the two
subroutines we developed for LCD: instruction write for 4-bit interface (instw4) and data write
for 4-bit interface (dataw4).

;subroutin CLOCKLCDDISPLAY
clockLCDdisplay

banksel hh1dec
movlw 0x30
addwf hh1dec ;ASCII conversion
addwf hh0dec
addwf mm1dec
addwf mm0dec
addwf ss1dec
addwf ss0dec
movf hh1dec,0
call dataw4 ;hh1dec write to LCD
movf hh0dec,0
call dataw4 ;hh0dec write to LCD
movlw ':'
call dataw4 ;: follows
movf mm1dec,0
call dataw4
movf mm0dec, 0
call dataw4
movlw ':'
call dataw4
movf ss1dec,0
call dataw4
movf ss0dec,0
call dataw4
return

The example code listed below comes with only main part: subroutines are omitted since we
already discussed them before. As before, the CBLOCK..ENDC part is also omitted since it is
the same block we used for CLOCK1.

;clock3.asm
;
;DIGITAL CLOCK ON LCD
; NO BUTTONS FOR TIME SETTING

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

235

;20x4 LCD module
;by Truly (HD44780 compatible)
;
; 4-bit interfacing
;
; Pin Connection from LCD to 16F877
; LCD (pin#) 16F877 (pin#)
;DB7 (14) -----RB7(40)
;DB6 (13) ----RB6(39)
;DB5 (12) ----RB5(38)
;DB4 (11) ----RB4(37)
;DB3 (10)
;DB2 (9)
;DB1 (8)
;DB0 (7)
;E (6) ------RB2(35)
;RW (5) -----RB3(36)
;RS (4) -----RB1(24)
;Vo (3) -----GND
;Vdd (2) ----+5V
;Vss (1) -----GND
;
;Example clcok display:
; PIC CLOCK (1st line)
; HH:MM:SS (2nd line)
;

list P = 16F877

STATUS EQU 0x03
PORTB EQU 0x06
TRISB EQU 0x86
RS EQU 0x01 ;RB1
E EQU 0x02 ;RB2
RW EQU 0x03 ;RB3
CARRY EQU 0x00
TMR0 EQU 0x01 ;Timer0 module
INTCON EQU 0x0B ;Intcon
OPTION_REG EQU 0x81 ;Option Register
T0IF EQU 0x02 ;tmr0 overflow flag
T0IE EQU 0x05 ;Tmr0 interrupt enable/disable
ZERO EQU 0x02 ;Zero flag on STATUS (1: zero)
GIE EQU 0x07 ;Global Interrupt
;RAM

CBLOCK 0x20
;NOTE INCLUDE THE VARIABLES (FILE REGISTERS) HERE
;

ENDC

;program should start from 0005h
;0004h is allocated to interrupt handler

org 0x0000
goto START

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

236

org 0x05
Start

BANKSEL TRISB
; 1 for input, 0 for output

movlw 0x00
movwf TRISB ;All output

;LCD routine starts
call delay10ms
call delay10ms ;LCD warm-up

banksel PORTB
bcf PORTB, RW ;RW set LOW here

;give LCD module to reset automatically

;For TMR0
banksel INTCON
clrf INTCON ;int disabled
clrf TMR0
movlw 0xC7
banksel OPTION_REG ;pre-scaler at 256
movwf OPTION_REG ;11000111
banksel TMR0
clrf TMR0

;END FOR TMR0

;4-BIT INTERFACING
;
;Function for 4-bit (only one write must be done)
;In other words, send only the high nibble
;IMPORTANT

movlw 0x28
call hnibble4

;Function for 4-bit, 2-line display, and 5x8 dot matrix
movlw 0x28
call instw4

;Display On, CUrsor On, No blinking
movlw 0x0E ;0F would blink
call instw4

;DDRAM address increment by one & cursor shift to right
movlw 0x06
call instw4

;DISPLAY CLEAR

movlw 0x01
call instw4

;Set DDRAM ADDRES
movlw 0x80 ;00
call instw4

;WRITE DATA in the 1st position of line 1
movlw 'P' ;P
call dataw4
movlw 'I' ;I
call dataw4

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

237

movlw 'C' ;C
call dataw4
movlw ' ' ;space
call dataw4
movlw 'C'
call dataw4
movlw 'L'
call dataw4
movlw 'O'
call dataw4
movlw 'C'
call dataw4
movlw 'K'
call dataw4

;
call clear ;HH=MM=SS=0

;hh1dec=hh0dec=0
;mm1dec=mm0dec=0
;ss1dec=ss0dec=0

AGAIN
;CLOCK DISPLAY
;Set DDRAM address for the 1st position of line 2 (40h)

movlw 0xC0 ;B'11000000'
call instw4 ;RS=0

;CLOCK DISPLAY PART
;Conversion of a hex to a 2-digit decimal number

movf SS,0
movwf hms
call h2d2
movf hms1dec,0
movwf ss1dec
movf hms0dec,0
movwf ss0dec

movf MM,0
movwf hms
call h2d2
movf hms1dec,0
movwf mm1dec
movf hms0dec,0
movwf mm0dec

movf HH,0
movwf hms
call h2d2
movf hms1dec,0
movwf hh1dec
movf hms0dec,0
movwf hh0dec

;Displaying them on LCD
call clockLCDdisplay

;1 sec delay
call delay1s

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

238

incf SS
movf SS,0
clrf STATUS
xorlw B'00111100' ;if SS=60(d) or 3C or 0011 1100
btfss STATUS, ZERO
goto again

clrf SS
incf MM
movf MM,0
clrf STATUS
xorlw B'00111100'
btfss STATUS,ZERO
goto again

clrf MM
incf HH
movf HH,0
clrf STATUS

;check 24hour 24d = 00011000
xorlw B'00011000'
btfss STATUS,ZERO
goto again
clrf STATUS
call clear
goto again

;====SUBROUTINES =====
;HERE
;=====================

END

If we compile the full code of CLOCK3 and run it, then we would see the following display.

CLOCK4 - LCD Display with Time Setting
This is the eventual version of our digital clock. We display the time on the LCD and provide
the feature of time setting. For the time setting feature, we have four buttons: TIME button for
the time setting session, HOUR button for Hour setting, MIN button for Minute setting, and
CLOCK button to start the clock. The TIME button would stop the clocking procedure and
accepts the HOUR and MIN keys to set the time. Since we cannot always wait for the TIME
button pressed, we would better have some type of interruption feature of 16F877.

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

239

As discussed early in this chapter, interrupt is a useful feature that allows the main program can
proceed without keeping eye on the event. Since the button triggered signal comes from outside
(external) of 16F877, we consider the RB0/INT interrupt. As the name implies, the RB0 pin
(PORTB<0>) has a dual use: regular I/O pin as RB0 and external interrupt (INT) source. This
interrupt can be enabled by setting the INT enable bit INTE (INTCON<4>).

External interrupt on the RB0/INT pin is edge triggered, either rising, if INTEDG bit
(OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge
appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. Flag bit INTF must be cleared
in software (i.e., in the code) in the interrupt service routine before re-enabling this interrupt.

The interrupt handler then should do a lot of work: (i) reading the HOUR and MIN buttons, (ii)
increasing the corresponding hex numbers for Hour and Minute, and (iii) reading CLOCK button
to expire the interrupt handler.

The main routine is not much different from CLOCK3: it displays the contents of HH, MM, and
SS (after hex to decimal conversion) no matter what the contents are. The only change includes
the necessary accommodation for PORTB for buttons and one LED attached at PORTD for
indication purpose. This LED will be turned on as far as the interrupt handler is being processed.
The CLOCK button would turn off the LED and clock starts. The circuit diagram for CLOCK4
is illustrated below. The TIME button is connected to RB0/INT pin, and HOUR, MIN, and
CLOCK buttons are connected to RD5, RD4, and RD2, respectively. The outputs from the
buttons, when not pressed, are High, and when pressed, the outputs experience a High-to-Low
transition. Therefore, the proper set-up for INTEDG is 'clear'.

Let's now discuss about the interrupt handler. As discussed, when the TIME button is pressed
the RB0/INT pin experiences the High-to-Low transition and this triggers the INT interrupt.
Then the Program Counter (PC) is changed to 0004h where the interrupt handler is residing. A
TIME button would clear the contents of the time units, and fill them with new values according
to the HOUR and MIN buttons. One click of HOUR or MIN would increase the value by 1 and
we display the content on LCD.

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

240

Fig. 72 Interrupt Handler

Let's consider how many different tasks are involved in the interrupt handler. First, we have to
detect the button pressing of HOUR or MIN. Then, as they are pressed, we have to display the
settings as they are changed. Detecting button presses is not difficult; it only needs a delicate
adjustment in time delays in button polling. This will be detailed while explaining the listed
code. So read the comment line very carefully for the most sensitive and reliable button reading.

So, our main topic is to remembering the set time by the buttons and displaying them as they are
changed, all inside the interrupt handler. So when a keyed-in from say, HH, is detected, the
content of HH is increased by 1. Then, we check if HH is 24. If it is 24, we have to change it to 0.
For MM, if the content is 60, we have to clear the value. After this adjustment, we display the
content in decimal format. This is done by calling the hex-to-2 digit decimal conversion
subroutine, h2d2. Then, we move the cursor of the LCD to the first column of line 2 and write
them. The following list of the interrupt handler contains everything we discussed now.

;RB0/INT handler

org 0x04 ;the interrupt vector address
banksel TRISD
movlw B'11111100'
movwf TRISD ;Buttons and LEDs

;Set DDRAM address for the 1st position of line 2 (40h)

movlw 0xC0 ;B'11000000'
call instw4 ;RS=0
call clear ;clear all the contents

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

241

call clockLCDdisplay ;Display 00:00:00
;as the time setting starts

banksel PORTD
bsf PORTD,0x01 ;INT indicator on
call delay10ms

;CLOCK ADJUSTMENT ROUTINE
;Check for HOUR or MIN Button Pressed

clrf STATUS
movlw 0x03
movwf Dtemp ;this is to check HOUR and MIN buttons

;3 times at a time with 1 ms delay

HOURCHECK
call delay1ms ;1ms delay is the best one
banksel PORTD
btfss PORTD, HOUR
goto HOURADJ ;HOUR key is detected
decfsz Dtemp
goto HOURCHECK

movlw 0x03
movwf Dtemp
clrf STATUS

MINCHECK
call delay1ms ;1 ms delay is the next one
btfss PORTD, MIN
goto MINADJ ;MIN key is detected
decfsz Dtemp
goto MINCHECK

ADJDONE
btfsc PORTD, CLOCK ;Wait until the CLOCK

;start button is pressed
goto HOURCHECK ;IF not, scan again for HOUR/MIN buttons
bcf INTCON, INTF ;Clear the INTF flag
banksel PORTD
bcf PORTD, 0x01 ;INT indicator off
retfie ;return from interrupt to main program

;hour adjustment
HOURADJ

clrf STATUS
banksel HH
incf HH
movf HH,0
xorlw B'00011000' ;24=00011000
btfsc STATUS,ZERO
clrf HH ;if =24, clear HH

;IF HH=24 set to 0
;

goto prep

MINADJ
clrf STATUS
banksel MM
incf MM

;IF MM=60 set to 0
movf MM,0

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

242

xorlw B'00111100' ;60=00111100
btfsc STATUS,ZERO
clrf MM ;if =24, clear MM
goto prep

prep

banksel HH ;hex-to-decimal conversion
movf HH,0
movwf hms
call h2d2
movf hms1dec,0
movwf hh1dec
movf hms0dec,0
movwf hh0dec

movf MM,0
movwf hms
call h2d2
movf hms1dec,0
movwf mm1dec
movf hms0dec,0
movwf mm0dec

movlw 0x00 ;for SS (no adjustment)
movwf ss1dec
movwf ss0dec

;Set DDRAM address for the 1st position of line 2 (40h)
movlw 0xC0 ;B'11000000'
call instw4 ;RS=0
call clockLCDdisplay
call delay10ms
goto ADJDONE ;scan again for another button press

;end of the interrupt handler

The interrupt handler actually takes most of the code of CLOCK4. The following code, with the
interrupt handler, for the presentation of the coding structure, shows the CLOCK4 program in all
except subroutines and CBLOCK...ENDC block.

;clock4.asm
;
;DIGITAL CLOCK ON LCD ------the last version
;with Buttons
;
;20x4 LCD module
;by Truly (HD44780 compatible)
;
; 4-bit interfacing
;
; Pin Connection from LCD to 16F877
; LCD (pin#) 16F877 (pin#)
;DB7 (14) -----RB7(40)
;DB6 (13) ----RB6(39)
;DB5 (12) ----RB5(38)
;DB4 (11) ----RB4(37)
;DB3 (10)

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

243

;DB2 (9)
;DB1 (8)
;DB0 (7)
;E (6) ------RB2(35)
;RW (5) -----RB3(36)
;RS (4) -----RB1(24)
;Vo (3) -----GND
;Vdd (2) ----+5V
;Vss (1) -----GND
;
;BUTTONS
;RB0---External INT---TIME SET button (Return to 00:00:00 and ready for
change)
;RD5 --- HOUR button (increase one at a button)
;RD4 --- MIN button
;RD2 --- CLOCK Button (Start the clock)
;
;NOTE: RB0 is normal HIGH, and it goes to LOW when the TIME button is
pressed.
; Therefore (1) INTEDG (OPTION_REG<6>) must be cleared.
; (2) GIE (Global interrupt) of INTCON must be set
; (3) INTE (INTCON<4>) must be set to enable INT interrupt
; (4) Once triggerred, INTF (INTCON<1>) would be set; this
; must be cleared by software.
;
;Example display:
; PIC CLOCK
; HH:MM:SS
;

list P = 16F877

STATUS EQU 0x03
PORTB EQU 0x06
TRISB EQU 0x86
PORTD EQU 0x08
TRISD EQU 0x88
RS EQU 0x01 ;RB1
E EQU 0x02 ;RB2
RW EQU 0x03 ;RB3
CARRY EQU 0x00
TMR0 EQU 0x01 ;Timer0 module
INTCON EQU 0x0B ;Intcon
OPTION_REG EQU 0x81 ;Option Register
INTEDG EQU 0x06 ;RB0/INT egde selection (1: rising; 0:falling)

INTE EQU 0x04 ;RB0/INT enable
INTF EQU 0x01 ;RB0/INT flag
T0IF EQU 0x02 ;tmr0 overflow flag
T0IE EQU 0x05 ;Tmr0 interrupt enable/disable
ZERO EQU 0x02 ;Zero flag on STATUS (1: zero)
GIE EQU 0x07 ;Global Interrupt
CLOCK EQU 0x02 ;CLOCK START BUtton
HOUR EQU 0x05 ;HOUR adj
MIN EQU 0x04 ;MINUTE adj
;RAM

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

244

CBLOCK 0x20
;NOTE INCLUDE THE SAME BLOCK, TO THIS PLACE, USED FOR CLOCK3
;ALONG WITH THE LINE BELOW

Dtemp
ENDC

;program should start from 0005h
;0004h is allocated to interrupt handler

org 0x0000
goto START

org 0x04
;RB0/INT handler

banksel TRISD
movlw B'11111100'
movwf TRISD

;Set DDRAM address for the 1st position of line 2 (40h)

movlw 0xC0 ;B'11000000'
call instw4 ;RS=0
call clear ;clear all the contents
call clockLCDdisplay
banksel PORTD
bsf PORTD,0x01 ;INT indicator on
call delay10ms

;CLOCK ADJUSTMENT ROUTINE
;Check for HOUR or MIN Button Pressed

clrf STATUS
movlw 0x03
movwf Dtemp

HOURCHECK
call delay1ms ;1ms delay is the best one
banksel PORTD
btfss PORTD, HOUR
goto HOURADJ
decfsz Dtemp
goto HOURCHECK

movlw 0x03
movwf Dtemp
clrf STATUS

MINCHECK
call delay1ms ;1 ms delay is the bext one
btfss PORTD, MIN
goto MINADJ
decfsz Dtemp
goto MINCHECK

ADJDONE
btfsc PORTD, CLOCK

;Wait until the CLOCK start button is pressed
goto HOURCHECK
bcf INTCON, INTF

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

245

banksel PORTD
bcf PORTD, 0x01 ;INT indicator off
retfie ;return to main program

;hour adjustment
HOURADJ

clrf STATUS
banksel HH
incf HH
movf HH,0
xorlw B'00011000' ;24=00011000
btfsc STATUS,ZERO
clrf HH

;IF HH=24 set to 0
;

goto prep

MINADJ
clrf STATUS
banksel MM
incf MM

;IF MM=60 set to 0
movf MM,0
xorlw B'00111100' ;60=00111100
btfsc STATUS,ZERO
clrf MM
goto prep

prep
banksel HH
movf HH,0
movwf hms
call h2d2
movf hms1dec,0
movwf hh1dec
movf hms0dec,0
movwf hh0dec

movf MM,0
movwf hms
call h2d2
movf hms1dec,0
movwf mm1dec
movf hms0dec,0
movwf mm0dec

movlw 0x00 ;for SS
movwf ss1dec
movwf ss0dec

;Set DDRAM address for the 1st position of line 2 (40h)
movlw 0xC0 ;B'11000000'
call instw4 ;RS=0
call clockLCDdisplay
call delay10ms
goto ADJDONE

; END of INT handler

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

246

Start
BANKSEL TRISB

; 1 for input, 0 for output

movlw 0x01
movwf TRISB ;All output except RB0/INT

banksel TRISD
movlw B'11111100' ;PORTD all inputs except the last two
movwf TRISD

banksel PORTD
bcf PORTD,0x01
bcf PORTD, 0x00 ;OFf the LEDs

;LCD routine starts
call delay10ms
call delay10ms

banksel PORTB
bcf PORTB, RW ;RW set LOW here

;give LCD module to reset automatically

;For RB0/INT
banksel INTCON
clrf INTCON ;int disabled
bsf INTCON, GIE ;interrupt enabled
bsf INTCON, INTE ;RB0/INT enable

;FOR TMR0
clrf TMR0
movlw 0xC7
banksel OPTION_REG ;pre-scaler at 255
movwf OPTION_REG ;10000111 (with INTEDG=0)
banksel TMR0
clrf TMR0

;END FOR TMR0

;THE ONLY CHANGE IN 4-BIT INTERFACING
;EXCEPT 2 SUBROUTINES
;
;Function for 4-bit (only one write must be done)
;In other words, send only the high nibble
;IMPORTANT
LCDINIT

movlw 0x28
call hnibble4

;Fundtion for 4-bit, 2-line display, and 5x8 dot matrix
movlw 0x28
call instw4

;Display On, CUrsor On, No blinking
movlw 0x0E ;0F would blink

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

247

call instw4
;DDRAM address increment by one & cursor shift to right

movlw 0x06
call instw4

LCDREADY
;DISPLAY CLEAR

movlw 0x01
call instw4

;Set DDRAM ADDRES
movlw 0x80 ;00
call instw4

;WRITE DATA in the 1st position of line 1
movlw 0x50 ;P
call dataw4

movlw 0x49 ;I
call dataw4

movlw 0x43 ;C
call dataw4
movlw ' '
call dataw4
movlw 'C'
call dataw4
movlw 'L'
call dataw4
movlw 'O'
call ataw4
movlw 'C'
call dataw4
movlw 'K'
call dataw4

;
call clear

AGAIN
;CLOCK DISPLAY
;Set DDRAM address for the 1st position of line 2 (40h)

movlw 0xC0 ;B'11000000'
call instw4 ;RS=0

;CLOCK DISPLAY PART

movf SS,0
movwf hms
call h2d2
movf hms1dec,0
movwf ss1dec
movf hms0dec,0
movwf ss0dec

movf MM,0
movwf hms

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

248

call h2d2
movf hms1dec,0
movwf mm1dec
movf hms0dec,0
movwf mm0dec

movf HH,0
movwf hms
call h2d2
movf hms1dec,0
movwf hh1dec
movf hms0dec,0
movwf hh0dec

call clockLCDdisplay
call delay1s
incf SS
movf SS,0
clrf STATUS
xorlw B'00111100' ;if SS=60(d) or 3C or 0011 1100
btfss STATUS, ZERO
goto again

clrf SS
incf MM
movf MM,0
clrf STATUS
xorlw B'00111100'
btfss STATUS,ZERO
goto again

clrf MM
incf HH
movf HH,0
clrf STATUS

;check 24hour 24d = 00011000
xorlw B'00011000'
btfss STATUS,ZERO
goto again
clrf STATUS
call clear
goto again

;SUBROUTINES
;HERE

END
;end of program

When you compile the full code and run it, the first LCD display would be like this: the clock
starts from 00:00:00.

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

249

When you press the TIME button, the LCD would go back to 00:00:00. And the clock does not
tick, instead, it waits for HOUR, MIN, or CLOCK button.

If you press the buttons of HOUR and MIN, the numbers for HH and MM would increase.

When you finally press the CLOCK button, the digital clock starts to tick from the set time.

If you leave your clock run for a day or so, you may notice that your clock is slightly slower than
your watch. The reason is that LCD display consumes a lot of time, a few tens of milli-seconds.
Therefore, to make your digital clock reasonably accurate, we reduce down the number of
overflows (remember 76) to make an exact 1 second delay. It is very hard to consider all the
delay factors in the program and find the exact number of the overflow count, however, just one
or two trial and error hopefully gives us the best number. So we change the 1 second time delay
to accommodate the delay involved in LCD display, as follows.

;DELAY SUBROUTINE for 1 Second delay
;
DELAY1s

banksel count
movlw 0x3C ;Count=76 for 1 second to expire

;lowered to 60 to
;accommodate LCD delays

movwf count

over btfss INTCON, T0IF ;Tmr0 overflow?
goto over
bcf INTCON, T0IF ;reset
decfsz count
goto over

return

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

250

4. TIMER 1 and Application to Color Sensing

Timer1 Module
The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and
TMR1L) which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L)
increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 Interrupt, if enabled, is
generated on overflow which is latched in the TMR1IF (PIR1<0>) interrupt flag bit. This
interrupt can be enabled/disabled by setting/clearing the TMR1IE (PIE1<0>) interrupt enable bit.
Timer1 can operate in one of three modes as a synchronous timer, a synchronous counter, or an
asynchronous counter.

This section discusses only of the synchronous counter feature of Timer1 module, counting the
pulses entered to either RC0/T1OSI (Pin#15) or RC1/T1OSO (Pin#16) pin. For further and
other applications, please refer to the Microchip 16F877 data sheet. The operation of Timer1 is
controlled by T1CON register.

Since we are reading external clock (or pulse) and we assume that it is not that fast, we normally
set the prescaler 1:1 ratio. In other words, we do not delay the sampling of the external pulse,
but treat the external clock as it is to count number of pulses per given period.

In the counter mode, there are two pins we can use to apply the external clock pulse:
RC0/T1OSO and RC1/T1OSI. Selection of one of them is controlled by the T1OSCEN bit.
Setting the bit selects RC1/T1OSO and clearing it does for RC0/T1OSI. Since our counter mode
is synchronous, we clear the T1SYNC bit. For TMR1CS bit, we set it for external clock

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

251

counting. Finally, we set the TMR1ON bit to start the Timer1 module. Counting of the rising
edge of the external clock pulse would increase the TMR1 registers (TMR1H and TMR1L) by
one. When the content crosses from FFFFh to 0000h, the Timer1 interrupt bit TMR1IF would be
set, if interrupt is enabled. Usually, when we count number of pulses within a period, we
disable the interrupt, and after the lapse of the time, we stop the timer and read the content of
TMR1 register. The initialization of T1CON for counting external clock pulses entered to the
pin #15 RC0/T1OSO would be: 00000010. When we start the counting, we set the TMR1ON,
bit0 of the T1CON.

Timer1 Counter Application to Color Sensor
Our application of Timer1 module as a counter is to color sensing using Texas Advanced
Optoelectronic Solutions (TAOS)'s TCS230 Programmable Color Light-to-Frequency Counter.
The TCS230 combines configurable silicon photodiodes and a current-to-frequency converter on
single monolithic CMOS integrated circuit.

The output is a square wave (50% duty cycle) with frequency directly proportional to light
intensity (irradiance). The full-scale output frequency can be scaled by one of three preset values
via two control input pins. Digital inputs and digital output allow direct interface to a
microcontroller or other logic circuitry. Output enable (OE) places the output in the high-
impedance state for multiple-unit sharing of a microcontroller input line. The light-to-frequency
converter reads an 8 x 8 array of photodiodes. Sixteen photodiodes have blue filters, 16
photodiodes have green filters, 16 photodiodes have red filters, and 16 photodiodes are clear with
no filters. All 16 photodiodes of the same color are connected in parallel and which type of
photodiode the device uses during operation is pin-selectable. Photodiodes are 120 µm x 120 µm
in size and are on 144-µm centers.

Fig. 73 Soic Package

VDD is for power supply voltage of +5V and ~OE should be Low to enable the color sensor.
OUT pin is to generate frequency equivalent of color and luminance level. The frequency of the
output can be programmed by S1 and S2 pins, from 100% to 20% to 2% to 0%. When 0% is
selected with S1=L and S0=L, the color sensor is actually inactive. The typical full scale (100%)
frequency is 600KHz. 20% of the frequency would then be 120KHz, and 2% would be 12KHz.
If we have high rate clock pulse and need very accurate count, we may want to use the full
frequency, however, in usual application 20% or 2% is just fine.

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

252

The pins of S2 and S3 determines which color filter we apply. The selection of S2=L and S3=L
would focus on red color, while S2=H and S3=H focus on green color. The color determination
by TCS230 needs a little experience. Under the same brightness, red color object would
generate higher frequency with red filter, and relatively low frequency with green and blue filter.
If we increase the brightness of the object, all the frequencies of the three filters would greatly
increase. Therefore, the ratio not the frequency themselves is used to determine the true color of
an object. Also, you may have to measure the frequency from OUT pin under your test
condition. Brightness surrounding the sensor and the object along with the brightness of the
LEDs for white light very much effect the nominal frequency of the sensor.

Fig. 74 PIC 16F877 connection to TC230

Since TCS230 is a very small surface mount device (SMD), without a surface mount adaptor
such as Model 9165 , a Surfboard series from Capital Advanced Inc, it is almost impossible to
implement the sensor.

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

253

Fig. 75(a) Surfboard Fig. 75(b) Surfboard with TCS230

 mounted on top

Also, providing a white light directly to the object is important, since the color we perceive is
nothing but the reflected wave from the object. The following photo shows the author's
implementation of a color sensor module with a TCS230, a 9165 Surfboard, and two high
intensity white LEDs. Commercial version would have a focus lens on top of the TCS230 to
have focused reflected wave from the object.

As illustrated, for 16F877 connection, we tied the ~OE to the ground so that TCS230 is always
turn on. By making S0=0 and S1=1, we select 2% of full frequency, i.e., 12 KHz. However,
under the author's test condition, the nominal frequency is only about 0.8 KHz for the "full
frequency of 12KHZ" configuration. Further test shows that the maximum frequency is about
2.5 KHz. In other words, under the test condition, the maximum number of pulse count would
be about 2500 per second. If we limit the counting period to only 100ms, the maximum number
would only be 250, which is small enough to be filled only the lower TMR1 register (TMR1L).

Fig. 76 Implementation of color sensor module

The color filter selection pins S2 and S3 are connected to RB5 and RB4, respectively. The OUT
pin of TCS230 is connected to RC0/T1OSO pin of 16F877.

The following example code tries to read a frequency from an object for color determination, by
reading 100ms for pulse count from a selected color filter configuration. The frequency counts
for Red, Blue, and Green are to be displayed to a PC monitor, in a two-digit hex number format;

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

254

Red1 & Red0, Blue1 & Blue0, and Green1 & Green0. The code does not try to
determine the color, instead it just spews out the R, G, B, ratios in frequency counts. The color
determination is left to the readers. The listing omits the subroutines, as usual.

The readers are encouraged to carefully follow the comments in the following code for better
understanding of the program. Note that the delay1s subroutine used here does not utilize the
Timer0 module; instead this is the first time delay subroutine we made using just numbers of
instructions to make 1 second delay. To ease confusion, only delay1s subroutine is included in
the subroutine section. All others are omitted.

;TCS230.asm
;
; This is to count 50% duty cycle pulses from TCS230 color sensor
; using tmr1 module
; of synchronous counter feature
;
; Output pulse from TCS230 is connected to RC0 (TICK1)
; Color Filter Selection S2 and S3 are connected to RB5 and RB4 respectively
; S2 (RB5) S3 (RB4)
; L L Red Filter
; L H Blue Filter
; H H Green Filter
; H L No Filter (Clear)
; Output Pulse Frequency Selection S0 and S1 are as follows (for 12 KHz
nominal)
; S0 S1
; L H (12 KHz)---actual value is much smaller in a test condition
; like 1 – 2KHz
;

list P = 16F877

STATUS EQU 0x03
PORTB EQU 0x06
TRISB EQU 0x86
PIE1 EQU 0x8C
PIR1 EQU 0x0C
T1CON EQU 0x10
TMR1L EQU 0x0E
TMR1H EQU 0x0F
INTCON EQU 0x8B
TMR1ON EQU 0x00
S2 EQU 0x05
S3 EQU 0x04
ZERO EQU 0x02 ;Z flag
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

255

BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)

;
;RAM

CBLOCK 0x20
TEMP
RedTEMP
BlueTEMP
GreenTEMP
Red1
Red0
Blue1
Blue0
Green1
Green0
ASCIIreg
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount100ms
Kount1s
Kount10s
Kount1m

ENDC

;
;===

org 0x0000
GOTO START

;=========== ===
org 0x05

START
call Async_mode

BANKSEL TRISB
movlw B'11000000'
movwf TRISB ;PORTB setting for S2 and S3

;TMR1 Initialization
banksel T1CON
clrf T1CON

banksel INTCON
clrf INTCON ;Disable interrupt

banksel PIE1
clrf PIE1 ;disable peripheral interrupt

banksel PIR1
clrf PIR1 ;clear peripheral interrupt flag

banksel T1CON

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

256

movlw '00000010'
movwf T1CON ;1:1 prescaler

;External Clock Source at RC0/T1OSO (pin #15)

;TMR1 is OFF now

AGAIN
banksel PORTB
bcf PORTB, S2
bcf PORTB, S3 ;RED filter is set
call delay10ms ;Wait for the setting is done
banksel TMR1H
clrf TMR1H
clrf TMR1L ;Clear the counting regsiter
bsf T1CON, TMR1ON ;Tmr1 now starts to increment
call delay100ms ;Continue counting for 100ms
banksel T1CON
bcf T1CON, TMR1ON ;TMR1 is OFF
banksel TMR1H

; movf TMR1H,0
; movwf T1HIGH

movf TMR1L,0 ;Get the RED count to W
movwf RedTEMP ;Store the RED count to RedTEMP register

; RED is finished
;

call delay10ms ;A short delay before Blue reading
; Go for Blue

banksel PORTB
bcf PORTB, S2
bsf PORTB, S3
call delay10ms
banksel TMR1H
clrf TMR1H
clrf TMR1L
bsf T1CON, TMR1ON ;Tmr1 now starts to increment
call delay100ms ;for 100ms

banksel T1CON

bcf T1CON, TMR1ON ;TMR1 is OFF

banksel TMR1H
; movf TMR1H,0
; movwf T1HIGH

movf TMR1L,0
movwf BlueTEMP ;Blue count

;
call delay10ms

; Go for Green
banksel PORTB
bsf PORTB, S2
bsf PORTB, S3
call delay10ms
banksel TMR1H
clrf TMR1H
clrf TMR1L
bsf T1CON, TMR1ON ;Tmr1 now starts to increment

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

257

call delay100ms ;for 100ms

banksel T1CON

bcf T1CON, TMR1ON ;TMR1 is OFF

banksel TMR1H
; movf TMR1H,0
; movwf T1HIGH

movf TMR1L,0
movwf GreenTEMP ;Green pulse count

;Display Preparation

;RED
movf RedTEMP,0
movwf TEMP
swapf TEMP,0 ;SWAP upper and lower nibbles --->W
andlw 0x0F ;Mask off upper nibble

call HTOA
movwf Red1

movf RedTEMP,0
andlw 0x0F ;mask of upper nibble
call HTOA
movwf Red0

;Blue
movf BlueTEMP,0
movwf TEMP
swapf TEMP,0 ;SWAP upper and lower nibbles --->W
andlw 0x0F ;Mask off upper nibble

call HTOA
movwf Blue1

movf BlueTEMP,0
andlw 0x0F ;mask of upper nibble
call HTOA
movwf Blue0

;Green
movf GreenTEMP,0
movwf TEMP
swapf TEMP,0 ;SWAP upper and lower nibbles --->W

andlw 0x0F ;Mask off upper nibble

call HTOA
movwf Green1

movf GreenTEMP,0
andlw 0x0F ;mask of upper nibble
call HTOA

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

258

movwf Green0

;display
;RED

movlw 'R'
call TXPOLL
movlw ':'
call TXPOLL
movf Red1,0
call TXPOLL
movf Red0,0
call TXPOLL
movlw ' '
call TXPOLL

;BLUE
movlw 'B'
call TXPOLL
movlw ':'
call TXPOLL
movf Blue1,0
call TXPOLL
movf Blue0,0
call TXPOLL
movlw ' '
call TXPOLL

;GREEN
movlw 'G'
call TXPOLL
movlw ':'
call TXPOLL
movf Green1,0
call TXPOLL
movf Green0,0
call TXPOLL
movlw ' '
call TXPOLL
call CRLF

call delay1s ;1 sec delay after R, G, B readings
goto AGAIN

;SUBROUTINE SECTION
;1 sec delay
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw H'64'
movwf Kount1s

R1s call Delay10ms
decfsz Kount1s
goto R1s
return

;
;INCLUDE OTHER SUBROUTINES

Chapter 9. Timer Modules and Digital Clock Application

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

259

; HERE
;

END
;end of program

Your running the program would show the following or similar display.

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

