Magnetic Energy Storage & Magnetic Crane

Dr. Charles Kim

Technical Advisor

VIP Team Seismolator

Howard University

www.mwftr.com/VIPatHUteams.html

Oct 31, 2016

Magnetic Energy Storage

Pulling force by magnetic Energy stored in magnetic field

 $\mathbf{F} = (\mathbf{B}^2/\mathbf{u}_0)^*\mathbf{A}$

F = mg

 $N = kg^* m / s^2$

 $\frac{1}{2}$ Newton is close to 500g, which is close to 1 lb.

₩ G = 9.8 m/s²

Magnetic System

Fi: mmf generated by Coil * Turn (NI) Free A=0.1m² Sl=5mm force Sle=1m In Newton) $\int let \\ A_g = A_c = A$ $F_m = \left(\frac{B^2}{\mu_o}\right) A_g \quad B = \mu_g$ Ag =0.1m

Magnetic Circuit

5

$$NI = \oint \left(\frac{2 \cdot k_{g}}{M_{o} A_{g}} + \frac{4c}{250 \mu_{o} A_{g}}\right) \qquad for equal to the equal tot the$$

Relationship between mmf and lifting force

 $F_{m} = \frac{B^{2}A_{g}}{M_{0}} = \frac{\left(\frac{M_{0}NI}{1.4 \times 10^{-2}}\right)^{2}A_{g}}{M_{0}} = \frac{\left(\frac{1.257 \times 10^{3} \times I^{2}}{1.96}\right)^{2}}{1.96}$

 $\rightarrow I^2 = \frac{F_m}{f_m}$

If Fm = 15000 Newston

I = 4.83 [A]

AWG 21 0.0285 0.723 35.1 13.8 0.810 0.410 42.00 12.80 22 0.0253 0.644 39.5 15.5 0.642 0.326 52.96 16.14 7 5 23 0.0226 0.573 17.4 20.36 44.3 0.509 0.258 66.79 _ 24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 3.5 2.1

Essex Magnet Wire 22 AWG Gauge Enameled Copper Wire - 10 LBS

Magnet Wire, Neodymium Magnets, Wind Generator and Rotor Blades. Applied Magnets (www.magnet4less.com), Top Quality, Lowest Price !!!

Relationship between (N and I) and lifting force

SMath Studio Deskto 🖹 File Edit View Insert 🗄 📄 🚔 📇 📥 👘 💼 👟 🧇 - 6 $u0 = 1.257 \cdot 10$ A = 0.1Fm = 15000 Fm µ0·A .1.4.10 NI =-NI = 4836.2198

% If N and I are two variables?

Summary for Energy Storage and Magnetic Crane

(1) Magnetic Circuit 1) JI 2) Area 3 Force Required to levitate (2) Find & from Magnetic Circuit (3) Convert ϕ to B (4) Use $F_m = \frac{B^2 A}{\mu_0}$ Relationship

Design Issues

#A) permeability of the core and the object-

- -- the material perspective
- B) the mean paths of air gap, core, and object --- the shape or geometry perspective
- C) number of turns of the coil --- the geometry and coil wire gauge perspective
 D) the weight of the object to lift up

Example

Barry's Magnetic Levitation

www.coilgun.info/levitation/home.htm

() D

Design Problem for Team Seismolator

- **1. Design** a magnetic crane which floats one sheet of **1200 x 2400 x 0.5 mm** steel-sheets stacked by
 - Modeling of an equivalent Circuit
 - Determination of the material characteristic of the steel-sheet
 - △ Selection of core material and permeability
 - Determination of Area of the core
 - Consideration of Insulated Wire (and American Wire Gauge) for coil
 Maximum Current Ampacity
 - Geometry of the Core after Number of Turn is found after calculation
 - △ A lot of trade-off between core material, core geometry, coil size, and the number of coil turns
 - Inclusion of the air-gap: 1 mm

2 Teams & 2 Designs

- Design Evaluation
- Final Design

American Wire Gauge

American wire gauge

From Wikipedia, the free encyclopedia

"AWG" redirects here. For other uses, see AWG (disambiguation).

American wire gauge (AWG), also known as the Brown & Sharpe wire gauge, is a standardized wire gauge system used since 1857 predominantly in North America for the diameters of round, solid, nonferrous, electrically conducting wire. Dimensions of the wires are given in ASTM standard B 258.^[1] The cross-sectional area of each gauge is an important factor for determining its current-carrying capacity.

AWG gauge	Conductor Diameter Inches	Conductor Diameter mm	Ohms per 1000 ft.	Ohms per km	Maximum amps for chassis wiring	Maximum amps for power transmission	Maximum frequency 100% skin for solid conductor	for depth copper	Breaking force Soft Annealed 37000 PSI	Cu	
17	0.0453	1.15062	5.064	16.60992	19	2.9	13 k Hz		59 lbs		
18	0.0403	1.02362	6.385	20.9428	16	2.3	17 kHz		47 lbs		
19	0.0359	0.91186	8.051	26.40728	14	1.8	21 kHz		37 lbs		
20	0.032	0.8128	10.15	33.292	11	1.5	27 kHz		29 lbs		
21	0.0285	0.7239	12.8	41.984	9	1.2	33 kHz		23 lbs		
22	0.0253	0.64516	16.14	52.9392							
23	0.0226	0.57404	20.36	66.7808				1			
24	0.0201	0.51054	25.67	84.1976							
25	0.0179	0.45466	32.37	106.173							
26	0.0159	0.40386	40.81	133.856							
27	0.0142	0.36068	51.47	168.821						CTTMCs in dustrial	
28	0.0126	0.32004	64.9	212.872						o remoti moustriar	
	-			Ma \$1	agnet Wire 27 AWG Gau 28.20 Buy It Now 10d Se	I Magnet Wire 2 e It \$28.40 Buy It N	low 8h See It	17 AWG (\$121.99 a	Gauge Enameled Buy It Now 2d See It	Magnet Wire 18 AWG Gau. \$19.17 Buy It Now 8h See	e It

https://en.wikipedia.org/wiki/American_wire_gauge

Magnet Wire 17 AWG Gauge Enameled Copper 200C 11b 158ft Magnetic Coil Winding

13

Design Problem for Team Seismolator

2. Prototype Implementation: a magnetic isolator for floating one sheet of 1200 x 2400 x 0.5 mm steelsheets.

Next Step

Hold Implementation: a magnetic isolator for floating An object of 1 lb weight

