
WWW.MWFTR.COM

Conversion of a Series Hybrid Vehicle to an Electric Vehicle

GOODNESS FOWORA IKENNA ONYENZE ARINZE UDEH OLANIYI NAFIU

Department of Electrical Engineering and Computer Science (EECS)

Advisor – Dr. Emmanuel Glakpe

2nd EECS Day April 20, 2018

PROBLEM FORMULATION

Problem Definition

• The hybrid vehicle has an inefficient internal combustion engine (ICE) that emits greenhouse gases which pollute the air and contribute to global warming.

Long Term Goal

• Turn the series hybrid General Motors EV 1 into an autonomous electric car

Academic Year Goal

• Create a detailed implementation plan to replace the current propulsion system of the hybrid vehicle with a fully electric drivetrain.

BACKGROUND

- History
 - The EV1 was produced by General Motors from 1996-1999
 - Discontinued and recalled because of lack of profits
 - Donated to CEA for research purposes
 - Converted from an electric car to a hybrid car by Dr Ganley

• Interests

- Research into real world electrical and mechanical systems
- EVs are the future of road transportation
- EVs are relevant to the advancement of the internet of things

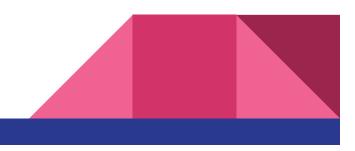
CONSTRAINTS

- Intellectual
 - Large learning gap
 - Unable to access relevant documents
- Project-Specific
 - Vehicle not accessible
 - Poor working conditions
- Socio-Cultural
 - Lack of charging stations
 - Range per full charge is low
 - Relatively new technology
- Political
 - Renewable energy industry lacks full support from U.S. administration

DESIGN REQUIREMENTS

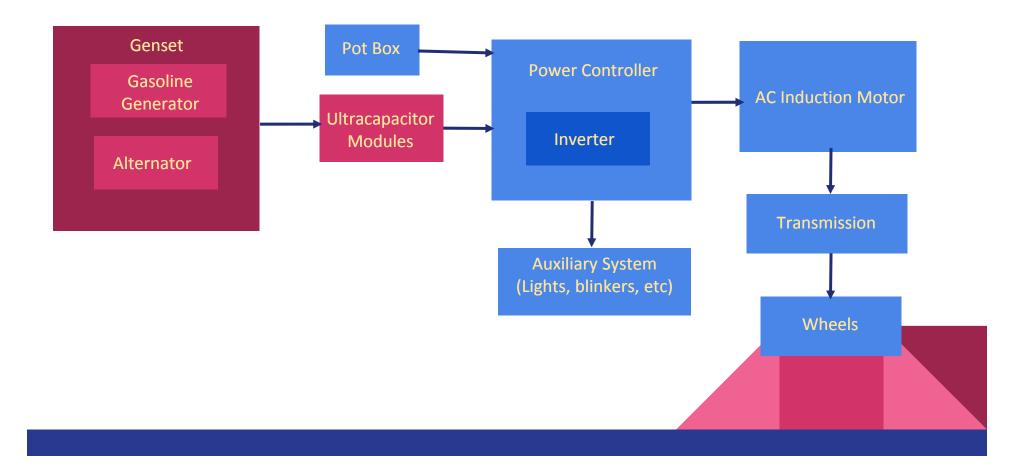
- Performance
 - Lifespan of battery pack at least 2 years
 - Range per full charge 75 miles
 - Battery module weight 470 to 520 kg
 - 0 50 mph in 6.5 seconds
 - Motor power 103kW
- Budget \$10,000
- Safety
 - National Highway Transport Safety Administration (NHTSA) Standards
 - Society of Automotive Engineers (SAE) Standards

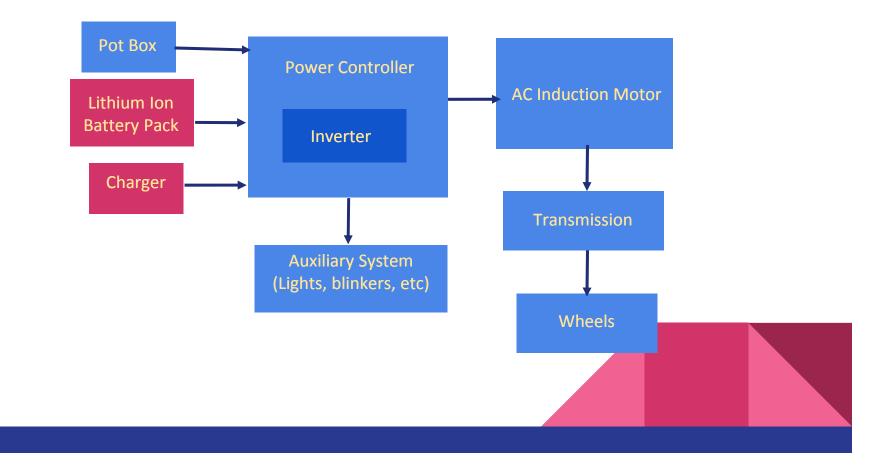
CURRENT STATUS OF ART


	Before 2014	After 2014
Range	< 100 miles.	> 200 miles.
Battery	16 - 24 kWh	30 - 100 kWh

Quick Facts

- Companies like Tesla have made EVs trendy
- EVs with a range of 200+ miles cost at least \$75k
- Electric car market is influenced by battery cost


2018 Tesla Model S


CURRENT STATUS OF ART

Electric Vehicle	2018 Tesla Model S	2018 Nissan Leaf	2018 BMW i3
Price	\$74,500	\$29,990	\$44,450
Range	249 - 315 mi	151 mi	114 mi
Battery (Lithium Ion)	75 KWh	40 KWh	33 KWh
Charge Time at 220V	8.5 - 10.72h	8h	5h
Horsepower	259	107	170

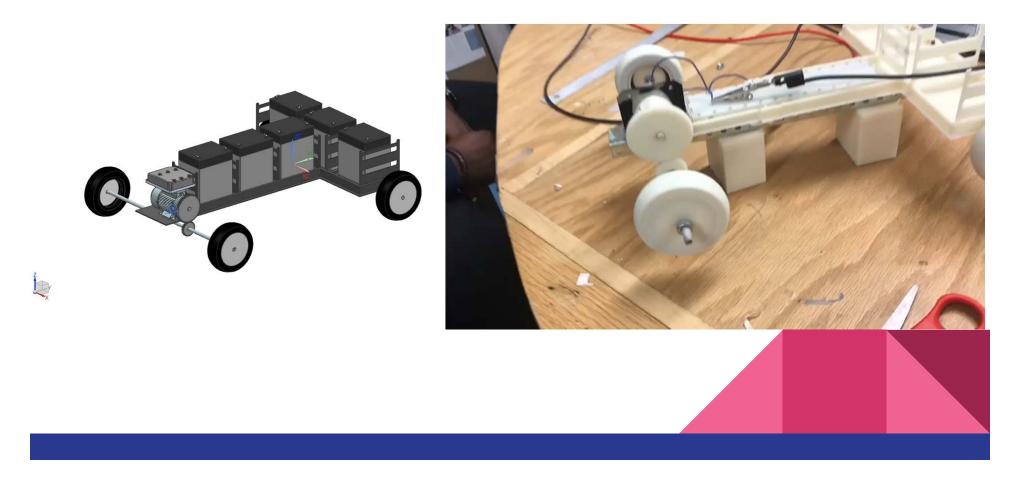
CURRENT PROPULSION SYSTEM

PROPOSED PROPULSION SYSTEM

Battery Calculation

	EV 1	EV 2.0
# of Modules	26	32
Individual Module Rating	12V, 53Ah	12V, 50 Ah
Total Module Rating	312V, 53 Ah	380V, 50 Ah
Weight	~490 kg	~512 kg
Total Energy	16.5 KWh	19 KWh

Total Energy =Voltage * Electric Charge in Amp-Hour

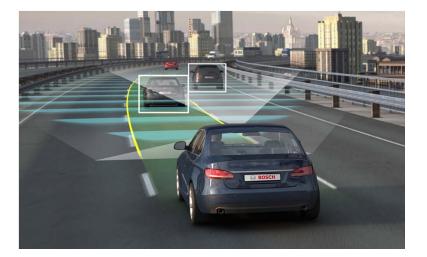


ASSIGNED TASKS

Task	Member Responsible
EV 1 Assessment	Ikenna Onyenze & Olaniyi Nafiu
Obtain relevant EV documents	Goodness Fowora & Arinze Udeh
Preparation of Implementation Plan	All
CAD Drawings	Ikenna Onyenze & Goodness Fowora
3D Printing	Goodness Fowora & David Quashie

CAD MODEL

COST ANALYSIS



SUMMARY

- EV1 was donated to CEA by General Motors.
- Professor Ganley converted EV1 to a series hybrid vehicle.
- Advancement in battery technology will increase the demand of electric vehicles
- Goals
 - 4-year Convert series hybrid vehicle into an autonomous electric vehicle.
 - 1st Year Create an implementation plan for the electric drivetrain.
- Prepared a detailed implementation plan
- Create a Computer Aided Design (CAD) schematic of the electric drivetrain
- 3D Print EV 2.0 propulsion system

Project Next Steps

- Execute implementation plan
- Commence autonomous portion of EV 2.0

ACKNOWLEDGMENTS

- Team Members
- Dr Jason Ganley
- Dr Charles Kim
- Dr Emmanuel Glakpe
- Classmates
- EV 2.0 VIP Team

