AutoMoe

Lateef Adetona, Tavares Kidd, Jordan Lafontant, Collin Scott

Faculty Advisor: Dr. Danda B. Rawat

2nd EECS Day April 20, 2018

40,200

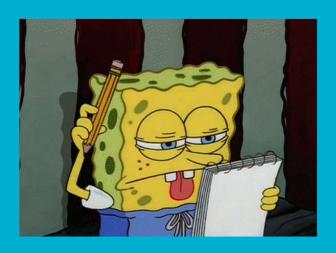

NSC Motor Vehicle Fatality Estimates Prepared by the Statistics Department National Safety Council

Table 1 December 2016 Motor-Vehicle Deaths and Changes United States, Twelve Months, 2013 to 2016*

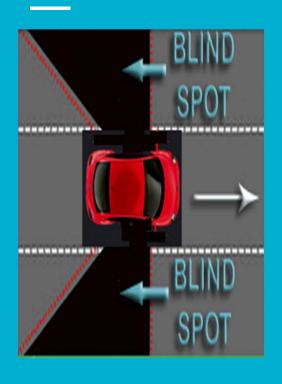
	Number of Deaths				Percent Changes				
					Corresponding Month			Four Month Moving Average +	
					2014 to 2014 to		2015 to	2014 to 2015 to	
Month	2013	2014	2015	2016	2016	2015	2016	2015	2016
January	2,642	2,572	2,754	2,740	7%		-1%		3%
February	2,296	2,248	2,350	2,880	28%		23%		6%
March	2,791	2,589	2,764	3,070	19%		11%		9%
April	2,719	2,720	2,830	3,170	17%		12%		11%
May	2,988	3,038	3,339	3,520	16%		5%		12%
June	3,181	3,084	3,222	3,550	15%		10%		10%
July	3,119	3,227	3,530	3,560	10%		1%		7%
August	3,378	3,277	3,642	3,740	14%		3%		5%
September	3,184	3,069	3,372	3,560	16%		6%		5%
October	3,173	3,304	3,550	3,790	15%		7%		4%
November	3,076	3,175	3,159	3,480	10%		10%		6%
December	2,822	3,095	3,245	3,140	1%		-3%		5%
TOTAL	35,369	35,398	37,757	40,200	14%		6%		

What's the Problem?

- Driving has numerous hazards and obstructions that can damage the car and driver.
- Blind spot accidents are results of switching lanes, incoming objects.

Current State of Art

Currently, many new vehicles have some level 1 & level 2 automation features such as:


- Level 1
 - a. Cruise Control
 - b. Obstruction warning
 - c. Parallel parking
- Level 2
- Automated lane guidance
- Driver fatigue detection

Future vehicles are projected to have some level 3 & level 4 automation features such as:

- Level 3
- Human emergency fail-safe
- Level 4
- Full automation/No Driver needed

What is Guiding Our Design?

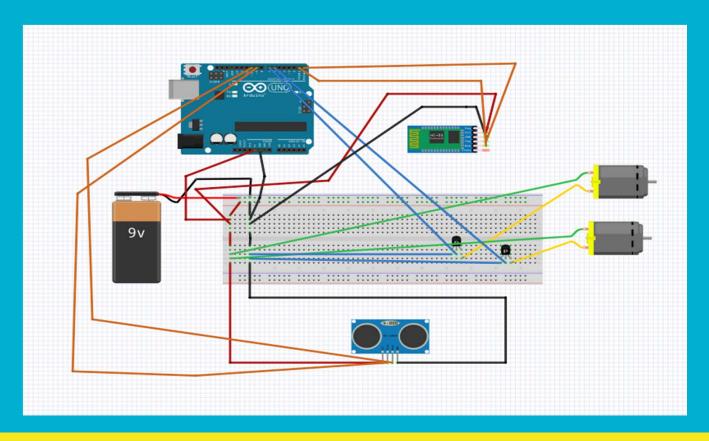
Obey 3 second Rule

15 ft of clear space in front of car

3 ft of clear space on sides of car

Quarter mile radius of awareness (15-20 seconds down the road)

5 seconds of signaling before changing lanes


2 second reaction time

Design Features


- Slow down
- If the vehicle is going straight, turn in the direction closest to our waypoint (more specifically, closest to the course to our waypoint).
- If the vehicle is already turning, then turn in the opposite direction to try to avoid the object.
- If we get within a definable distance of the object, stop, backup, and try again.

Design Solution

Design Solution (cont.)

Snippet of "processGPS" function→ where the Arduino processes the location information determined by the Android application/device.

← Snippet of "calDesiredTurn" function where the Arduino determines which is the best turn to make when the ultrasonic distance sensor detects an object in front of the vehicle.

Project Implementation Process

Embedded Video

Project Implementation Process

Embedded Video

Project Implementation Process

Embedded Video

Conclusion

Next Steps

• Team AutoMoe's goal is to develop an autonomous car. We shall achieve this goal by combining the functions of several sensors and modules to emulate high levels of autonomy.