WWW.MWFTR.COM

AutoMoe

Mar 27 2018

4th Progress Presentation

Lateef Adetona, Tavares Kidd, Jordan Lafontant, Collin Scott

Milestone Update

Mar	1	Write code for LCD display and compass	jordan/Co llin
	2	Write code for GPS and navigation	jordan/Co llin
	3	Write code for sensors and remaining functions	jordan/Co llin
	4	Test code and make adjustments	jordan/Co llin
Apr	1	Final Testing	Lateef

Updates (Hardware)

- Individual component testing has concluded.
- *Play video on ultrasonic distance sensor

Updates (Software)

• Arduino navigation code via peripherals

Updates (Arduino)

void processGPS(void)

currentLat = convertDegMinToDecDeg(GPS.latitude); currentLong = convertDegMinToDecDeg(GPS.longitude);

if (GPS.lat == 'S') // make them signed currentLat = -currentLat; if (GPS.lon = 'W') currentLong;

// update the course and distance to waypoint based on our new position
distanceToWaypoint();
courseToWaypoint();

// processGPS(void)

void calcDesiredTurn(void)

if (headingError > 180)

headingError -= 360;

// calculate where we need to turn to head to destination headingError = tangetHeading - currentHeading; // adjust for compass wrap if (headingError < -180) headingError + = 360;

```
// calculate which way to turn to intercept the targetHeading
if (abs(headingError) <= HEADING_TOLERANCE) // if within tolerance, don't turn
turnDirection = straight;
else if (headingError < 0)
turnDirection = left;
else if (headingError > 0)
turnDirection = right;
else
turnDirection = straight;
```

```
// calcDesiredTurn()
```

int distanceToWaypoint()

float delta = radians(currentLong - targetLong); float sdlong = sin(delta); float cdlong = cos(delta); float lat1 = radians(currentLat); float lat2 = radians(targetLat); float slat1 = sin(lat1); float clat1 = cos(lat1); float slat2 = sin(lat2); float clat2 = cos(lat2); delta = (clat1 * slat2) - (slat1 * clat2 * cdlong); delta = sq(delta); delta += sq(clat2 * sdlong); delta = sqrt(delta); float denom = (slat1 * slat2) + (clat1 * clat2 * cdlong); delta = atan2(delta, denom); distanceToTarget = delta * 6372795;

// check to see if we have reached the current waypoint
if (distanceToTarget <= WAYPOINT_DIST_TOLERANE)
nextWaypoint();</pre>

return distanceToTarget;
} // distanceToWaypoint()

int courseToWaypoint()

```
float dlon = radians(targetLong-currentLong);
float cLat = radians(currentLat);
float tLat = radians(targetLat);
float a1 = sin(dlon) * cos(tLat);
float a2 = sin(cLat) * cos(tLat) * cos(dlon);
a2 = cos(cLat) * sin(tLat) - a2;
a2 = atan2(a1, a2);
if (a2 < 0.0)
{
    a2 += TWO_PI;
}
```

targetHeading = degrees(a2);
return targetHeading;
} // courseToWaypoint()

✓ ► void moveAndAvoid(void) ●	▼ ◀ ► case left: // if already ●			
<pre>void moveAndAvoid(void) * void moveAndAvoid(void) { if (sonarDistance >= SAFE_DISTANCE) // no close objects in front of car</pre>	<pre>case left: // if already turning left, try right case left: turnWotor->run(TURN_RIGHT); break; case right: // if already turning right, try left</pre>			
Line 45, Column 16				

Risk Management

- Battery may be insufficient to power entire breadboard & Arduino
 - Battery can only output a max of 5 volts via USB cable

Next Steps

- Build the circuit!
 - Have all components powered by a mobile battery
- Bluetooth connectivity from app to arduino
- Beta testing