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Abstract 
 

Our vision is to build a real-time, portable, cheap and intelligent cell phone application 
based multi-directional communication system which can successfully convert American Sign 
Language (ASL) to text and speech to text. We attempt to do this using image and video 
processing techniques namely: skin color detection and background elimination with NumPy and 
OpenCV, histogram of oriented vectors and support vector machines.  In order to realize this 
vision, we need a comprehensive library of ASL. 

The steps involved in realizing this vision were as follows: first we compiled a 
comprehensive ASL to English dictionary that we put on a remote database on a TCP socket 
based server. Next, we created and converted the images in usable data using skin detection, 
background elimination, and support vector machines and saved it on our server . We then do the 
same computation on images that we get from the user and find the best match in our dataset. 
The resulting word which compares more closely to the input image is then sent as output to the 
GUI of the communicating users’ cell phones.  

Currently, our program is able to successfully convert sign language to English text in a 
controlled environment for signing users who are wearing dark colors and long sleeve shirts. It is 
also only able to recognize the one word it is currently programmed to recognize: 
“WELCOME”.  This makes our recall ratio very high at 0.9, but reduces our precision to 
0.000000975. 

This system attempts to bridge the gap between close to 28 million people in the United 
States who are either deaf, mute or hearing impaired, and the rest of the population who can 
either speak or write English language.  
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Introduction 
 

There are approximately 38,225,590 people in the United States who are either deaf or 
hard of hearing.1 This number represents 13% of the population. There is an estimate of about 
2,000,000 people who speak American Sign Language (ASL) in the United States2. In addition 
to the United States, ASL is spoken in most of Anglophone Canada. Also, ASL based dialects 
are spoken in several West African and Southeast Asian countries. The difficulty arises because 
most non-deaf people do not speak ASL, and this creates a communication barrier between the 
deaf and the non-deaf. However, both deaf and hearing people are able to read and write English, 
in the United States in particular.  

Written English has been used as the communication bridge between the hearing and the 
hard of hearing or deaf. Unfortunately, the current state of the art is sufficient to bridge this gap 
effectively. People in the deaf and hard of hearing community are forced to use dictionaries or 
interpreters to communicate effectively with those who can hear. This is unfortunately either 
very costly with hiring an interpreter, or cumbersome with the sign language dictionary.   

In an attempt to bridge this gap, we have designed a sign language to written English and 
speech to text translator which is cheap, portable and can do real time translation. The 
application is cell phone based and uses the camera on the user’s cell phone. This application 
works on an algorithm that applies image processing techniques using NumPy and OpenCV, a 
connection oriented socket based server for fast, reliable and accurate computation.  

 
 

Problem Statement 
  

People in the deaf and mute community do not have a time efficient way of 
communicating with those who do not use ASL, thus obstructing and interfering with full 
integration into society. Our project is to build a portable device that converts ASL gestures to 
text and uses speech-to-text technology for successful communication between users and non-
users of American Sign Language.  
 

 
Current Status of Art 

 
 In 2012, for a capstone project, a group of engineering technology students and industrial 
design students designed the concept for and created a prototype for the My Voice device, which 

                                                 
1 Harrington, Tom. "Deaf Statistics   Tags: Deaf, Faq  ." Deaf Population of the U.S. Gallaudet University Libraries, July 2014. Web. 
19 Apr. 2016. 
 
2 Harrington, Tom. "Sign Language   Tags: Deaf, Faq  ." ASL: Ranking and Number of Users. Gallaudet University Libraries, May 
2014. Web. 20 Apr. 2016. 
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takes in video input and translates it to audible words.3 The conceptual design of My Voice is a 
handheld, portable device that uses a microphone, sound board, speaker, video camera, and 
monitor. When placed on a hard surface, it reads a user’s sign language movements. Once My 
Voice processes the motions, it then translates sign language into an electronic voice that can be 
heard. It can also capture a person’s voice and can translate words into sign language, which is 
projected on its monitor. Currently, this device can only translate one phrase. This design is a 
nice start to the world of translating sign language for non-ASL users. This design, however, is 
not very practical in that users have to worry about carrying and the possibility of forgetting 
another device on the daily basis.  

The Microsoft Kinect Sign Language translator was developed by Microsoft China and 
uses the Kinect device that was originally created for Xbox360. The user stands in front of the 
camera on the Kinect device, which can detect the motion of anyone in front of the camera. On a 
screen, communication is realized by both parties, the sign language speaking constituent and 
their counterpart. Written and spoken translations of sign language are shown for the non-sign 
language speaking parties, while an avatar carries out gestures translated by the spoken words of 
the non-signing party.4 This prototype is wonderful in that it bridges the gap between the two 
parties for fluid communication because of its capability to do real-time translations. The concept 
is not portable, however, which reduces the practicality of the system in that it can only be used 
where a computer, screen, and Kinect device are present, producing a very controlled and 
unrealistic situation.  

From Texas A&M, a wearable device was created to translate sign language gestures. 
Although the device is in the prototype stage, it is already able to recognize 40 ASL gestures 
with about 96 percent accuracy. The inertial sensor in this device responds to motion, using an 
accelerometer and gyroscope to measure accelerations and angular velocities of the arm and 
hand. This sensor also uses the user’s hand orientations to make accurate predictions. This design 
also uses an electromyographic sensor to measure the muscle activity, in order to be able to 
distinguish between gestures that may be similar in arm and hand movement but different in 
finger placement. The data from the device is sent via Bluetooth to a remote laptop to be 
computed through algorithms that interpret and translate these gestures into text.5 This device 
uses a new approach, but fails to bridge the gap between communication between the ASL 
speaking community and the English speaking community. This device only provides one-sided 
understanding, which doesn’t really benefit the ASL speaker but the English speaker.  

                                                 
3 Emery, Mike. “UH Students Develop Prototype Device That Translates Sign Language”. May 2012. Web. 20 Apr 2016. 
http://www.uh.edu/news-events/stories/2012/may/0529MyVoice.php . 
 
4 “Kinect Sign Language Translator expands communication possibilities”. Web. 20 Apr 2016. Research.microsoft.com/en-
us/collaboration/stories/kinectforsignlanguage_cs.pdf  
 
5 Garcia, Ryan. “New technology at Texas A&M could enable smart devices to recognize, interpret sign language”. Aug 2015. Web. 
20 Apr 2016. Engineering.tamu.edu/news/2015/08/20/slr-technology  
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There are of course other conventional ways to seek understanding that don’t provide the 
speed that we would like to have. ASL dictionaries show pictorials of how to articulate different 
signs to ASL users, but don’t prove to be as helpful for those on the other side of the situation. 
Flipping through pages to match a recently viewed gesture to the pictorials in a dictionary is not 
very efficient. The same is available as an application for Android and Apple platforms, but the 
same problems remain.  
 

Design Requirements 
 

 Our design would be useless is it does not certain requirements and standards that allow it 
to serve its intended purpose. We want the communication between users of our system to be 
real-time, with as little delay as possible between the system input and output. This can be 
achieved if the delay between the signal and the written text is in the order of milliseconds. Also, 
in order to ensure reliability of translation, the system must be 100% precise (where precision is 
the ratio of the number of true positives to the number of translations ). Furthermore, for a high 
accuracy in translation, the system is designed to have a recall ratio no less than 0.95(where the 
recall is the ratio of number of true positives to the number of translations). With the 
aforementioned precision and recall values, the system is expected to have an F1 score of at least 
0.97 (where the F1 score is the harmonic mean of the precision and recall). The needs to capture 
enough frames from a given sign in order to correctly differentiate it from a similar sign. Our 
system ensures this by capturing input images at a rate of 30 frames per second. Additionally, 
our system needs to be portable and affordable, with each component costing less than $10, and 
the entire system with accessories weighing less than 0.25lbs.  
 

Solution Generation 
 

 There were different possible approaches that we could have implemented in this design. 
Last year, the team came up with a different design. These two designs are similar in multiple 
ways, though distinctly different from each other. We did a comparative analysis of the two 
designs before selecting this year’s team design.  
 Last year, the design included a portable device with a camera, as seen in Figure 1.0 
below.  
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application. There could be no additional weight, and the cost incurred will just be that of 
purchasing the application from the Apple Store or the Play Store.  
 

 
Final Goals and Deliverables 

 
By the end of the Spring 2016 semester, our goal was to have a working algorithm and 

application. The server, algorithm, and application are all in communication. As time progresses, 
the goal by May 2017 is to have an optimized system altogether. The algorithm will be enhanced 
in order to provide more accurate and faster results. Next, more data, taken from different 
application users and a multitude of tests, will be added to the data set in order to provide precise 
results in diverse and unique cases, the cases being diverse in skin tone, expression, and relative 
distance of hand to face. Lastly, our application will be available in the Apple Store.  
 

Implementation, Testing, and Evaluation 
 
We are using a socket-based server and iPhone application. Oracle describes a socket as 

“one endpoint of a two-way communication link between two programs running on the network. 
A socket is bound to a port number so that the TCP layer can identify the application that data is 
destined to be sent to”.7 Sockets allow for bidirectional travel of data. Rather than an HTTP 
server, a socket based server does not require internet connection, data, or Wi-Fi. For our 
purposes, transmission control protocol (TCP) sockets are more useful for our design in that they 
provide the flexibility of coding in the language of the programmer’s choice and sending the 
exact data needed to send in order to improve proficiency. Lastly, our server can track what 
clients are using the system.8  

Our application has three main views: A view for the client to declare their nickname in 
the server’s chat room space (joinView), a view for the user to be able to input and view text 
and/or translations between the two users communicating with one another (chatView), and a 
view that shows the viewfinder of the camera (cameraView). 

                                                 
7 “The Java Tutorials”. What is a Socket? 2015. Web. 20 Apr 2016. 
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html 
 
8 Rocchi, Cesare. “Networking Tutorial for iOS: How To Create A Socket Based iPhone App and Server”. June 2011. Web. 20 Apr 
2016. https://www.raywenderlich.com/3932/networking-tutorial-for-ios-how-to-create-a-socket-based-iphone-app-and-server  
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Future Works 
 

The next steps in our design are as follows: first, compute the parameters of the 
remaining data in the training set. Next, establish successful communication between the cell 
phone application and the server. We will then go on to train the dataset, and build a classifier 
that can recognize and track hands and faces in an image. Finally, building the accessories and 
establishing communication between each accessory, the application and the server.  
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Source Code Listing 
Algorithm Implementation: 
from __future__ import print_function 
import argparse 
from os import listdir 
from imutils.object_detection import non_max_suppression 
from imutils import paths 
import time 
import math 
# imaging engine to use to process images 
# import the necessary packages 
ENGINE = 'opencv_engine' 
from os.path import isfile, join 
import numpy as np 
import cv2 
#from pyimagesearch import imutils 
import argparse 
import imutils 
 
# Create a window to display the camera feed 
cv2.namedWindow('Camera Output') 
 
 
 
# define the upper and lower boundaries of the HSV pixel 
# intensities to be considered 'skin' 
lower = np.array([0, 48, 80], dtype = "uint8") 
upper = np.array([20, 255, 255], dtype = "uint8") 
 
Parameters = [] 
cnt2 = None 
 
mypath='/Users/Galani/Desktop/africa' 
onlyfiles = [ f for f in listdir(mypath) if isfile(join(mypath,f)) ] 
 
def compare(Parameters, contour, onlyfiles): 
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 Welcome1 = [5.430795917066408, 0.5985512771635532, 2.0721788886407637, 
0.87584979217091408, 0.8986834573554665, 63.856762487299818, 184.5670609832643] 
 Welcome2 = [5.970398357341481, 0.5761633011413521, 2.2514900654859424, 
0.89595229018531142, 0.8539362394274561, 48.682292722461796, 155.04837954651444] 
 Welcome3 = [7.7432667864466005, 0.6516775396085741, 3.385763570031182, 
0.95538777869037417, 0.8870916587377101, 39.454477941643056, 143.33875958721003] 
 
 dic = {} 
 
 
 for n in range(1, len(onlyfiles)): 
  firstFrame = None 
  max_index = 0 
  scnd_max_index = 0 
  cnt = None 
  img = cv2.imread( join(mypath,onlyfiles[n]) ) 
  imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
  blur = cv2.GaussianBlur(imgray,(5,5),0) 
  image = imutils.resize(img, width=min(400, img.shape[1])) 
  orig = image.copy() 
  if firstFrame is None: 
   firstFrame = imgray 
  # continue                                       
  converted = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) 
  skinMask = cv2.inRange(converted, lower, upper) 
  kernel = np.ones((3,3),np.uint8) 
  skinMask = cv2.dilate(skinMask, kernel, iterations = 2) 
  skinMask = cv2.GaussianBlur(skinMask, (3, 3), 0) 
  skin = cv2.bitwise_and(img, img, mask = skinMask) 
  im_gray = cv2.cvtColor(skin,cv2.COLOR_BGR2GRAY) 
  (thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY | 
cv2.THRESH_OTSU) 
  se = np.ones((12,12), dtype='uint8')  #Return a new array of given shape and type, 
filled with ones. numpy.ones(shape, dtype=None, order='C')[source] 
  thresh_open = cv2.morphologyEx(im_bw, cv2.MORPH_OPEN, se) 
  thresh_close = cv2.morphologyEx(im_bw, cv2.MORPH_CLOSE, se)   #It is 
useful in closing small holes inside the foreground objects, or small black points on the object  
  im_bw =  cv2.dilate(im_bw,kernel, iterations = 3) 
  contours, hierarchy = 
cv2.findContours(thresh_close,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)   #Finds 
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contours in a binary image.retrieves all of the contours and reconstructs a full hierarchy of nested 
contours. This full hierarchy is built and shown in the OpenCV contours.c demo. 
  areas = [] 
  largest = 0 
  secondlargestcontour = 0 
  largestcontour = 0 
  for i, j in enumerate(contours): 
   area = cv2.arcLength(j, True) 
   areas.append(area) 
   if area > largest: 
    largest = area 
    index = i 
  if (areas != []): 
   new_areas = areas 
   max_index = np.argmax(areas) 
   cv2.drawContours(img,contours, max_index ,(0,255,0),3) 
   cv2.imshow("binary", im_bw) 
   cv2.imshow("images", np.hstack([img, skin])) 
   print(max_index) 
   cnt=contours[max_index] 
   new_areas = areas[:max_index] + areas[max_index+1 :] 
   second_max_index = np.argmax(new_areas) 
   scnd_max_index = 0 
   for i, j in enumerate (areas): 
    if j == new_areas[second_max_index]: 
     scnd_max_index = i 
   min_area = areas[scnd_max_index] 
   cnt2 = contours[scnd_max_index] 
 
   dic.update({n: cv2.matchShapes(cnt2, contour, 
CV_CONTOURS_MATCH_I1, 0.0)}) 
 
 for key, value in d.iteritems(): 
  if min(dic.values()) == dic[key]: 
   return i 
 
 
  
 
 
cap = cv2.VideoCapture(0) 
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while( cap.isOpened() ) : 
 firstFrame = None 
 max_index = 0 
 scnd_max_index = 0 
 cnt = None 
 ret,img = cap.read() 
 
 imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
 blur = cv2.GaussianBlur(imgray,(5,5),0) 
 # resize it to (1) reduce detection time 
    # and (2) improve detection accuracy 
 image = imutils.resize(img, width=min(400, img.shape[1])) 
 orig = image.copy() 
 if firstFrame is None: 
  firstFrame = imgray 
  # continue                                       
   
 converted = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) 
 skinMask = cv2.inRange(converted, lower, upper) 
 
 kernel = np.ones((3,3),np.uint8) 
 skinMask = cv2.dilate(skinMask, kernel, iterations = 2) 
 
 
 # blur the mask to help remove noise, then apply the 
 # mask to the frame 
     
 skinMask = cv2.GaussianBlur(skinMask, (3, 3), 0) 
 skin = cv2.bitwise_and(img, img, mask = skinMask) 
 im_gray = cv2.cvtColor(skin,cv2.COLOR_BGR2GRAY) 
 (thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY | 
cv2.THRESH_OTSU) 
  
 
     
 
 se = np.ones((12,12), dtype='uint8')  #Return a new array of given shape and type, filled 
with ones. numpy.ones(shape, dtype=None, order='C')[source] 
 thresh_open = cv2.morphologyEx(im_bw, cv2.MORPH_OPEN, se) 
 thresh_close = cv2.morphologyEx(im_bw, cv2.MORPH_CLOSE, se)   #It is useful in 
closing small holes inside the foreground objects, or small black points on the object  
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 im_bw =  cv2.dilate(im_bw,kernel, iterations = 3) 
 contours, hierarchy = 
cv2.findContours(thresh_close,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)   #Finds 
contours in a binary image.retrieves all of the contours and reconstructs a full hierarchy of nested 
contours. This full hierarchy is built and shown in the OpenCV contours.c demo. 
 areas = [] 
 largest = 0 
 secondlargestcontour = 0 
 largestcontour = 0 
 for i, j in enumerate(contours): 
  area = cv2.arcLength(j, True) 
  areas.append(area) 
  if area > largest: 
   largest = area 
   index = i 
 if (areas != []): 
  new_areas = areas 
  max_index = np.argmax(areas) 
  cv2.drawContours(img,contours, max_index ,(0,255,0),3) 
  cv2.imshow("binary", im_bw) 
  cv2.imshow("images", np.hstack([img, skin])) 
  print(max_index) 
  cnt=contours[max_index] 
  new_areas = areas[:max_index] + areas[max_index+1 :] 
  second_max_index = np.argmax(new_areas) 
  scnd_max_index = 0 
  for i, j in enumerate (areas): 
   if j == new_areas[second_max_index]: 
    scnd_max_index = i 
  min_area = areas[scnd_max_index] 
  # maximum_area = areas[max_index] 
  # minimum_area = areas[max_index]/3 
  cnt2 = contours[scnd_max_index] 
  x,y,w,h = cv2.boundingRect(cnt) 
  cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2) 
  (p1,q1), radius1 = cv2.minEnclosingCircle(cnt) 
  center1 = (int(p1), int(q1)) 
  radius1 = int (radius1) 
  cv2.circle(img, center1, radius1, (0, 255, 0), 2) 
  a,b,c,d = cv2.boundingRect(cnt2) 
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  cv2.rectangle(img,(a,b),(a+c,b+d),(0,255,0),2) 
  (p2,q2), radius2 = cv2.minEnclosingCircle(cnt2) 
  center2 = (int(p2), int(q2)) 
  radius2 = int (radius2) 
  cv2.circle(img, center2, radius2, (0, 255, 0), 2) 
  cent1 = np.array(center1) 
  cent2 = np.array(center2) 
  distance = np.linalg.norm(cent1-cent2) 
  print("distance = ", distance) 
  # compute the absolute difference between the current frame and first frame 
  frameDelta = cv2.absdiff(firstFrame, imgray) 
  thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1] 
  # dilate the thresholded image to fill in holes, then find contours 
  # on thresholded image 
  thresh = cv2.dilate(thresh, None, iterations=2) 
  (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_SIMPLE) 
  # loop over the contours 
  c = None 
  for c in cnts: 
  # if the contour is too small, ignore it 
   if cv2.contourArea(c) < args["min_area"]: 
    continue 
  # compute the bounding box for the contour, draw it on the frame, 
  # and update the text 
  if c != None: 
   (r, s, t, u) = cv2.boundingRect(c) 
   cv2.rectangle(frame, (r, s), (r + t, s + u), (0, 255, 0), 2) 
  dotProduct = sum((a*b) for a, b in zip(center1, center2)) 
  cos = dotProduct/ ( np.linalg.norm(cent2)* np.linalg.norm(cent1)) 
  angle = np.arccos(cos) 
  angle = angle * (180 / ((22/7))) 
  print("cosine = ", cos) 
  print("angle = ", angle) 
 
  m = cv2.moments(cnt2) 
  Area          = m['m00'] 
  Perimeter     = cv2.arcLength(cnt2,True) 
  BoundingBox   = cv2.boundingRect(cnt2) 
  Centroid      = ( m['m10']/m['m00'],m['m01']/m['m00'] ) 
  EquivDiameter = np.sqrt(4*Area/np.pi) 
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  Extent        = Area/(BoundingBox[2]*BoundingBox[3]) 
  ConvexHull    = cv2.convexHull(cnt2) 
  ConvexArea    = cv2.contourArea(ConvexHull) 
  Solidity      = Area/ConvexArea 
  centre,axes,angle2 = cv2.fitEllipse(cnt2) 
  MAJ = np.argmax(axes) 
  MIN = 1-MAJ 
  MajorAxisLength = axes[MAJ] 
  MinorAxisLength = axes[MIN] 
  ratio = MajorAxisLength/MinorAxisLength 
  Eccentricity    = np.sqrt(1-(axes[MIN]/axes[MAJ])**2) 
  Orientation     = angle2 
  EllipseCentre   = centre  
  Parameters =  [Perimeter/MinorAxisLength, Extent, ratio, Eccentricity, Solidity, 
angle, distance] 
  print("Parameters " ,Parameters) 
 
 
 
 
 
   
 
 cv2.waitKey(100/30) 
 
    # if the 'q' key is pressed, stop the loop 
 if cv2.waitKey(1) & 0xFF == ord("q"): 
  break 
 
 cv2.drawContours(img,contours, max_index ,(0,255,0),3) 
 cv2.drawContours(img,contours, scnd_max_index ,(0,0,255),3) 
 #c = contours[ind]  
     
 
 # show the skin in the image along with the mask 
 cv2.imshow("binary", im_bw) 
 # cv2.imshow("contours", cnt) 
 
 cv2.imshow("images", np.hstack([img, skin])) 
 cv2.waitKey(100/30) 
 
    # if the 'q' key is pressed, stop the loop 
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 if cv2.waitKey(1) & 0xFF == ord("q"): 
  break 
 # compare(Parameters, cnt2, onlyfiles) 
 
 Welcome1 = [5.430795917066408, 0.5985512771635532, 2.0721788886407637, 
0.87584979217091408, 0.8986834573554665, 63.856762487299818, 184.5670609832643] 
 Welcome2 = [5.970398357341481, 0.5761633011413521, 2.2514900654859424, 
0.89595229018531142, 0.8539362394274561, 48.682292722461796, 155.04837954651444] 
 Welcome3 = [7.7432667864466005, 0.6516775396085741, 3.385763570031182, 
0.95538777869037417, 0.8870916587377101, 39.454477941643056, 143.33875958721003] 
 answer = [] 
 for i, j in enumerate(Parameters): 
  found = [abs(Welcome1[i]-Parameters[i]), abs(Welcome2[i] - Parameters[i])] 
  if min(found) == abs(Welcome1[i]-Parameters[i]): 
   answer.append(1) 
  elif min(found) == abs(Welcome2[i]-Parameters[i]): 
   answer.append(2) 
  # elif min(found) == abs(Welcome1[i]-Parameters[i]): 
  #  answer.append(3) 
 
 if all(answer[i] <= answer[i+1] for i in xrange(len(answer)-1)): 
  print("the Sign says  WELCOME!", ) 
 print (answer) 
 
 
 
cv2.destroyAllWindows() 
system.exit() 
 
 
 


