

A Pr

Sig

ototype

D

gn Lan

for Mult
Text and

Advi

Department

Sign Langu

EECE 40

Proje

nguag
(SL

ti-Direct
d Speech

Vane
Mich

isor : Dr. M

t of Electri

Howar

Apr

uage to Engli

1

01 Senior D

ect Rep

ge to E
LatE8
tional Am
h to Tex

essa Galan
helle Warre

Mohamed F

cal & Com

rd Univers

ril 20, 2016

ish Text

Design

port

English
8)

merican
xt Transla

ni
en

F. Chouikh

mputer Eng

sity

6

h Text

n Sign La
ation.

ha

gineering

t

anguage to

Sign Language to English Text

2

Abstract

Our vision is to build a real-time, portable, cheap and intelligent cell phone application
based multi-directional communication system which can successfully convert American Sign
Language (ASL) to text and speech to text. We attempt to do this using image and video
processing techniques namely: skin color detection and background elimination with NumPy and
OpenCV, histogram of oriented vectors and support vector machines. In order to realize this
vision, we need a comprehensive library of ASL.

The steps involved in realizing this vision were as follows: first we compiled a
comprehensive ASL to English dictionary that we put on a remote database on a TCP socket
based server. Next, we created and converted the images in usable data using skin detection,
background elimination, and support vector machines and saved it on our server . We then do the
same computation on images that we get from the user and find the best match in our dataset.
The resulting word which compares more closely to the input image is then sent as output to the
GUI of the communicating users’ cell phones.

Currently, our program is able to successfully convert sign language to English text in a
controlled environment for signing users who are wearing dark colors and long sleeve shirts. It is
also only able to recognize the one word it is currently programmed to recognize:
“WELCOME”. This makes our recall ratio very high at 0.9, but reduces our precision to
0.000000975.

This system attempts to bridge the gap between close to 28 million people in the United
States who are either deaf, mute or hearing impaired, and the rest of the population who can
either speak or write English language.

Sign Language to English Text

3

Contents

1. Introduction……………………………………………………………………………….4

2. Problem Statement……...………………………………………………………………...4

3. Current Status of Art……………………………………………………………………....5

4. Design Requirements……………………………………………………………………..6

5. Solution Generation...…………………………………………………………………….6

6. Semester and Final end goals and Deliverables…….…………………………………….8

7. Implementation, Testing, and Evaluation………………………………………………....8

8. Conclusion……………..………………………………………………………………...11

9. Recommendations for Future Works...…………………………………………………..12

10. References...……………………………………………………………………………...12

11. Source Code Listing …………………………………………………………………….13

Sign Language to English Text

4

Introduction

There are approximately 38,225,590 people in the United States who are either deaf or
hard of hearing.1 This number represents 13% of the population. There is an estimate of about
2,000,000 people who speak American Sign Language (ASL) in the United States2. In addition
to the United States, ASL is spoken in most of Anglophone Canada. Also, ASL based dialects
are spoken in several West African and Southeast Asian countries. The difficulty arises because
most non-deaf people do not speak ASL, and this creates a communication barrier between the
deaf and the non-deaf. However, both deaf and hearing people are able to read and write English,
in the United States in particular.

Written English has been used as the communication bridge between the hearing and the
hard of hearing or deaf. Unfortunately, the current state of the art is sufficient to bridge this gap
effectively. People in the deaf and hard of hearing community are forced to use dictionaries or
interpreters to communicate effectively with those who can hear. This is unfortunately either
very costly with hiring an interpreter, or cumbersome with the sign language dictionary.

In an attempt to bridge this gap, we have designed a sign language to written English and
speech to text translator which is cheap, portable and can do real time translation. The
application is cell phone based and uses the camera on the user’s cell phone. This application
works on an algorithm that applies image processing techniques using NumPy and OpenCV, a
connection oriented socket based server for fast, reliable and accurate computation.

Problem Statement

People in the deaf and mute community do not have a time efficient way of
communicating with those who do not use ASL, thus obstructing and interfering with full
integration into society. Our project is to build a portable device that converts ASL gestures to
text and uses speech-to-text technology for successful communication between users and non-
users of American Sign Language.

Current Status of Art

 In 2012, for a capstone project, a group of engineering technology students and industrial
design students designed the concept for and created a prototype for the My Voice device, which

1 Harrington, Tom. "Deaf Statistics Tags: Deaf, Faq ." Deaf Population of the U.S. Gallaudet University Libraries, July 2014. Web.
19 Apr. 2016.

2 Harrington, Tom. "Sign Language Tags: Deaf, Faq ." ASL: Ranking and Number of Users. Gallaudet University Libraries, May
2014. Web. 20 Apr. 2016.

Sign Language to English Text

5

takes in video input and translates it to audible words.3 The conceptual design of My Voice is a
handheld, portable device that uses a microphone, sound board, speaker, video camera, and
monitor. When placed on a hard surface, it reads a user’s sign language movements. Once My
Voice processes the motions, it then translates sign language into an electronic voice that can be
heard. It can also capture a person’s voice and can translate words into sign language, which is
projected on its monitor. Currently, this device can only translate one phrase. This design is a
nice start to the world of translating sign language for non-ASL users. This design, however, is
not very practical in that users have to worry about carrying and the possibility of forgetting
another device on the daily basis.

The Microsoft Kinect Sign Language translator was developed by Microsoft China and
uses the Kinect device that was originally created for Xbox360. The user stands in front of the
camera on the Kinect device, which can detect the motion of anyone in front of the camera. On a
screen, communication is realized by both parties, the sign language speaking constituent and
their counterpart. Written and spoken translations of sign language are shown for the non-sign
language speaking parties, while an avatar carries out gestures translated by the spoken words of
the non-signing party.4 This prototype is wonderful in that it bridges the gap between the two
parties for fluid communication because of its capability to do real-time translations. The concept
is not portable, however, which reduces the practicality of the system in that it can only be used
where a computer, screen, and Kinect device are present, producing a very controlled and
unrealistic situation.

From Texas A&M, a wearable device was created to translate sign language gestures.
Although the device is in the prototype stage, it is already able to recognize 40 ASL gestures
with about 96 percent accuracy. The inertial sensor in this device responds to motion, using an
accelerometer and gyroscope to measure accelerations and angular velocities of the arm and
hand. This sensor also uses the user’s hand orientations to make accurate predictions. This design
also uses an electromyographic sensor to measure the muscle activity, in order to be able to
distinguish between gestures that may be similar in arm and hand movement but different in
finger placement. The data from the device is sent via Bluetooth to a remote laptop to be
computed through algorithms that interpret and translate these gestures into text.5 This device
uses a new approach, but fails to bridge the gap between communication between the ASL
speaking community and the English speaking community. This device only provides one-sided
understanding, which doesn’t really benefit the ASL speaker but the English speaker.

3 Emery, Mike. “UH Students Develop Prototype Device That Translates Sign Language”. May 2012. Web. 20 Apr 2016.
http://www.uh.edu/news-events/stories/2012/may/0529MyVoice.php .

4 “Kinect Sign Language Translator expands communication possibilities”. Web. 20 Apr 2016. Research.microsoft.com/en-
us/collaboration/stories/kinectforsignlanguage_cs.pdf

5 Garcia, Ryan. “New technology at Texas A&M could enable smart devices to recognize, interpret sign language”. Aug 2015. Web.
20 Apr 2016. Engineering.tamu.edu/news/2015/08/20/slr-technology

Sign Language to English Text

6

There are of course other conventional ways to seek understanding that don’t provide the
speed that we would like to have. ASL dictionaries show pictorials of how to articulate different
signs to ASL users, but don’t prove to be as helpful for those on the other side of the situation.
Flipping through pages to match a recently viewed gesture to the pictorials in a dictionary is not
very efficient. The same is available as an application for Android and Apple platforms, but the
same problems remain.

Design Requirements

 Our design would be useless is it does not certain requirements and standards that allow it
to serve its intended purpose. We want the communication between users of our system to be
real-time, with as little delay as possible between the system input and output. This can be
achieved if the delay between the signal and the written text is in the order of milliseconds. Also,
in order to ensure reliability of translation, the system must be 100% precise (where precision is
the ratio of the number of true positives to the number of translations). Furthermore, for a high
accuracy in translation, the system is designed to have a recall ratio no less than 0.95(where the
recall is the ratio of number of true positives to the number of translations). With the
aforementioned precision and recall values, the system is expected to have an F1 score of at least
0.97 (where the F1 score is the harmonic mean of the precision and recall). The needs to capture
enough frames from a given sign in order to correctly differentiate it from a similar sign. Our
system ensures this by capturing input images at a rate of 30 frames per second. Additionally,
our system needs to be portable and affordable, with each component costing less than $10, and
the entire system with accessories weighing less than 0.25lbs.

Solution Generation

 There were different possible approaches that we could have implemented in this design.
Last year, the team came up with a different design. These two designs are similar in multiple
ways, though distinctly different from each other. We did a comparative analysis of the two
designs before selecting this year’s team design.
 Last year, the design included a portable device with a camera, as seen in Figure 1.0
below.

࢛࢘ࢍ࢏ࡲ
This desi
algorithm
images to
image of
perimeter
data set f
translatio
 T
setting, a
word in q
make our
would ha
of it is no
space bec
Furtherm
from last
necessity

6 Basilio, Jo
Color Model
CEMATH Co

Dhun 	�.�	ࢋ࢘

ign includes
m for this des
o the HSV (H
f the hand is
r, area, conv
for best fit. T
on to the sign
This year how
a sign langua
question. We
r design mor
ave a backgr
ot able to do
cause this co

more, we used
t year’s pred
y for the user

orge, Gualberto T
l as Skin Detectio
onference, 2011

ngel, Etienne, Ko
Am

an Intel DE
sign is based
Hue Saturati
then used to

vex hull, and
The candidat
ned word. A
wever, we vi
age speaker s
e decided to
re practical a
round behind

a backgroun
olor space is
d a connecti

dicted 3 secon
rs to buy a co

Torres, Gabriel P
on." Explicit Imag
. Web.

Sign Langu

olloh, Yilma “Sign
merican Sign Gest

2i-150 Atom
d in OpenCV
ion Value) c
o compute ba
d these value
te word with
Also, last yea
iewed the pro
signs using g
focus on tra

and marketab
d them which
nd eliminatio
luma indepe
on oriented
nds to the or
omponent by

Perez, Karina Me
ge Detection Usi

uage to Engli

7

n Language to Eng
ture to English Tex

m board whic
V and NumP
olor space a
asic image p
s are superim

h the best com
ar’s approach
oblem differ
gestures, rath
anslating com
ble. Also, w
h would pote
on. We comp
endent, resul
socket based
rder of millis
y implement

dina, and Hector
ing YCbCr Space

ish Text

glish Text (SLatE)
xt”. April 2015

ch did all the
Py in Python.
and does a ba
parameters: th
mposed on v
mparative re
h was to tran
rently. First
her than spe
mplete word

we considered
entially skew

mputed our im
lting in a bet
d server to re
seconds. We
ting our syst

r Meana. "Explic
e Color Model as

- An embedded pr

e computatio
. The algorit
asic hand ex
the eccentric
values of stor
esult is then c
nslate the AS
and foremos
lling out eac

ds rather than
d that most p
w the results
mages in the
tter perform
educe compu
e also elimin
tem as a cell

it Image Detectio
s Skin Detection

rototype for transl

on. The
thm converts

xtraction. The
city, convexi
red words in
chosen as th
SL alphabet.
st, in a pract
ch letter of th
n characters
people signin
s of the trans
YCrCb colo

mance.6
utation time

nated the
l phone

on Using YCbCr
(n.d.): n. pag.

ating

s the
e
ty,

n the
he
.
ical
he
to
ng
slator
or

Space

Sign Language to English Text

8

application. There could be no additional weight, and the cost incurred will just be that of
purchasing the application from the Apple Store or the Play Store.

Final Goals and Deliverables

By the end of the Spring 2016 semester, our goal was to have a working algorithm and

application. The server, algorithm, and application are all in communication. As time progresses,
the goal by May 2017 is to have an optimized system altogether. The algorithm will be enhanced
in order to provide more accurate and faster results. Next, more data, taken from different
application users and a multitude of tests, will be added to the data set in order to provide precise
results in diverse and unique cases, the cases being diverse in skin tone, expression, and relative
distance of hand to face. Lastly, our application will be available in the Apple Store.

Implementation, Testing, and Evaluation

We are using a socket-based server and iPhone application. Oracle describes a socket as

“one endpoint of a two-way communication link between two programs running on the network.
A socket is bound to a port number so that the TCP layer can identify the application that data is
destined to be sent to”.7 Sockets allow for bidirectional travel of data. Rather than an HTTP
server, a socket based server does not require internet connection, data, or Wi-Fi. For our
purposes, transmission control protocol (TCP) sockets are more useful for our design in that they
provide the flexibility of coding in the language of the programmer’s choice and sending the
exact data needed to send in order to improve proficiency. Lastly, our server can track what
clients are using the system.8

Our application has three main views: A view for the client to declare their nickname in
the server’s chat room space (joinView), a view for the user to be able to input and view text
and/or translations between the two users communicating with one another (chatView), and a
view that shows the viewfinder of the camera (cameraView).

7 “The Java Tutorials”. What is a Socket? 2015. Web. 20 Apr 2016.
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html

8 Rocchi, Cesare. “Networking Tutorial for iOS: How To Create A Socket Based iPhone App and Server”. June 2011. Web. 20 Apr
2016. https://www.raywenderlich.com/3932/networking-tutorial-for-ios-how-to-create-a-socket-based-iphone-app-and-server

Currently
server fo

W
colour sp

We used

With this
This skin
picks up
 T
position a
the image
the conve
the head,
are then c
images w
input fram
kept for f
reduced s
compare
computat

࢛ࢍ࢏ࡲ
y, the applica
r computatio

When the dat
pace.

the skin clu

s skin mask,
n mask howe
other colors

The next step
and angle be
e was made.
ex hull, the c
, the area, th
compared to

will be comp
me matches
further comp
such that by
the frames t

tion time and

S :	�.�	ࢋ࢛࢘
ation uses lo
on rather tha
ta is received

൥ܻݎܥܾܥ൩ ൌ 	 ൥ 111
uster at

we were abl
ever, because
s, especially
p in the comp
etween the tw
. When the h
convexity de
e perimeter,

o values in ou
ared is reduc
the the begi

parisons in th
the time the

to. This tech
d effort.

Sign Langu

Screenshots of pag

ow amounts
an being com
d at the serve162828൩ ൅	൥ 65.4െ37.11

85
135

 Where Y,

le to success
e the color ra
those with a

putation is to
wo. The assu
hand is succe
efects, the ec
and the aspe

ur reference
ced with eac
nning of a se
he next itera
e user is com
hnique increa

uage to Engli

9

ges: joinView, chat

of storage, s
mputed in the
er, each imag481 128.5.797 െ74.212 െ93.7
Y > 80
< Cb <135
< Cr < 180,
 Cb, Cr = [0

sfully extrac
ange is so la

a high red co
o track the ha
umption that
essfully dete
ccentricity, th
ect ratio of t
dataset. The

ch iteration f
et of signs, t

ations. The se
mpeting the w
ases the accu

ish Text

tView, and camera

since all cam
e application
ge frame is c553 24.96203 112786 െ18.21
,

0, 255].

t every skin
arge to accom
olor value as
and and face
t the hand w

ected, the pro
he relative a
the image ar
e dataset wit
for a given si
then only fra
et of plausib

word, there a
uracy of our

aView respectively

mera input is
n itself.
converted to614൩ ൥ܴܤܩ൩

color from a
mmodate eve
being skin c

e and track th
would be the
operties of th
angle betwee
e computed.
th which the
ign by elimi
ames from th
ble words are
are only a few
algorithm an

y

sent to the

o the YCrCb

a given fram
ery skin tone
color.
he relative
smaller obje
he image, na
en the hand a
. These valu
 subsequent
nation. If the

hose signs ar
e therefore
w words left
nd reduces

me.
e,

ect in
amely
and
es

e
re

t to

Fig

Sign Langu

gure 3.0. A visu

Figure 4.

uage to Engli

10

ual representation

0 Hand and face t

ish Text

 of the algorithm.

tracking.

Thus far,
attainable
language
brought d
however

T
computat
yearly su
of users,

 O
plague th
but it pro
hearing a
positively
implemen
phone wh
of a comp
alternativ

Fig

, our system
e precision,

e and that ou
down to a re
not significa

The system h
tion is done

ubscription to
and requirin

Our system a
he deaf and h
ovides multi-
and the deaf.
y to the little
ntation of th
hile simultan
plete system
ves are either

igure 5.0. Skin

has been tra
recall and F

ur system is o
ecall ratio of
ant because

however mee
in the order
o Apple Dev
ng no mainte

ddresses the
hard of heari
-directional c
. Although o
e training tha
his system us
neously incre

m failure. Thi
r too expens

Sign Langu

n colour detection

ained only on
1 scores. Giv
only trained
0.9 and prec
our system i

ets the other
of milliseco

velopers, ma
enance from

Co

e communica
ing in our co
communicat

our system is
at it has had,
sing servers
easing comp
is product w
sive, not prac

uage to Engli

11

, picture cutesy of

n one word,
ven that ther
to recognize
cision as low
is not yet suf
design requi

onds. Beside
aking it poten

the user.

onclusion

ation issue w
ommunity. It
tion, making
s not yet fully
, and produc
removes the

putation spee
will thrive in

ctical, or non

ish Text

f http://www.lifepr

“WELCOM
re are over 1
e one of thos
w as 0.00000
fficiently tra
irements: it i
s, the total p
ntially cheap

which has pla
t doesn’t onl
g it suitable f
y trained, it

ced the expec
e problem of
ed, accuracy
a market wh
n-existent.

rint.com/asl101/

ME”. This gr
1025641 wor
se words, ou
00975. Thes
ained.
is weightles

production co
p with an inc

agued and co
ly translate A
for the hearin
has respond
cted outcom
f storage on t
y and reducin
here the only

eatly reduce
rds in the En

ur performan
se values are

s at 0lbs, and
ost is at $99
creased amou

ontinues to
ASL to Engl
ng, the hard

ded very
me. The

the user's’ ce
ng the likelih
y other

es the
nglish
nce is
e

d the
for a

unt

ish,
of

ell
hood

Sign Language to English Text

12

Future Works

The next steps in our design are as follows: first, compute the parameters of the
remaining data in the training set. Next, establish successful communication between the cell
phone application and the server. We will then go on to train the dataset, and build a classifier
that can recognize and track hands and faces in an image. Finally, building the accessories and
establishing communication between each accessory, the application and the server.

References

● Padden, Carol (2010), "Sign Language Geography", in Mathur, Gaurav; Napoli,
Donna, Deaf Around the World (PDF), New York: Oxford University Press, pp. 19–
37, ISBN 0199732531, retrieved November 25,2012

● Harrington, Tom. "Deaf Statistics Tags: Deaf, Faq ." Deaf Population of the U.S.
Gallaudet University Libraries, July 2014. Web. 19 Apr. 2016.

● Harrington, Tom. "Sign Language Tags: Deaf, Faq ." ASL: Ranking and Number of
Users. Gallaudet University Libraries, May 2014. Web. 20 Apr. 2016.

● Emery, Mike. “UH Students Develop Prototype Device That Translates Sign
Language”. May 2012. Web. 20 Apr 2016. http://www.uh.edu/news-
events/stories/2012/may/0529MyVoice.php .

● “Kinect Sign Language Translator expands communication possibilities”. Web. 20
Apr 2016. Research.microsoft.com/en-
us/collaboration/stories/kinectforsignlanguage_cs.pdf

● Garcia, Ryan. “New technology at Texas A&M could enable smart devices to
recognize, interpret sign language”. Aug 2015. Web. 20 Apr 2016.
Engineering.tamu.edu/news/2015/08/20/slr-technology

● “The Java Tutorials”. What is a Socket? 2015. Web. 20 Apr 2016.
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html

● Rocchi, Cesare. “Networking Tutorial for iOS: How To Create A Socket Based
iPhone App and Server”. June 2011. Web. 20 Apr 2016.
https://www.raywenderlich.com/3932/networking-tutorial-for-ios-how-to-create-a-
socket-based-iphone-app-and-server

● Basilio, Jorge, Gualberto Torres, Gabriel Perez, Karina Medina, and Hector Meana.
"Explicit Image Detection Using YCbCr Space Color Model as Skin Detection."
Explicit Image Detection Using YCbCr Space Color Model as Skin Detection (n.d.):
n. pag. CEMATH Conference, 2011. Web.

● “The Java Tutorials”. What is a Socket? 2015. Web. 20 Apr 2016.
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html

● http://www.lifeprint.com/asl101/

Sign Language to English Text

13

● Dhungel, Etienne, Kolloh, Yilma “Sign Language to English Text (SLatE) - An
embedded prototype for translating American Sign Gesture to English Text”. April
2015

Source Code Listing
Algorithm Implementation:
from __future__ import print_function
import argparse
from os import listdir
from imutils.object_detection import non_max_suppression
from imutils import paths
import time
import math
imaging engine to use to process images
import the necessary packages
ENGINE = 'opencv_engine'
from os.path import isfile, join
import numpy as np
import cv2
#from pyimagesearch import imutils
import argparse
import imutils

Create a window to display the camera feed
cv2.namedWindow('Camera Output')

define the upper and lower boundaries of the HSV pixel
intensities to be considered 'skin'
lower = np.array([0, 48, 80], dtype = "uint8")
upper = np.array([20, 255, 255], dtype = "uint8")

Parameters = []
cnt2 = None

mypath='/Users/Galani/Desktop/africa'
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath,f))]

def compare(Parameters, contour, onlyfiles):

Sign Language to English Text

14

 Welcome1 = [5.430795917066408, 0.5985512771635532, 2.0721788886407637,
0.87584979217091408, 0.8986834573554665, 63.856762487299818, 184.5670609832643]
 Welcome2 = [5.970398357341481, 0.5761633011413521, 2.2514900654859424,
0.89595229018531142, 0.8539362394274561, 48.682292722461796, 155.04837954651444]
 Welcome3 = [7.7432667864466005, 0.6516775396085741, 3.385763570031182,
0.95538777869037417, 0.8870916587377101, 39.454477941643056, 143.33875958721003]

 dic = {}

 for n in range(1, len(onlyfiles)):
 firstFrame = None
 max_index = 0
 scnd_max_index = 0
 cnt = None
 img = cv2.imread(join(mypath,onlyfiles[n]))
 imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 blur = cv2.GaussianBlur(imgray,(5,5),0)
 image = imutils.resize(img, width=min(400, img.shape[1]))
 orig = image.copy()
 if firstFrame is None:
 firstFrame = imgray
 # continue
 converted = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
 skinMask = cv2.inRange(converted, lower, upper)
 kernel = np.ones((3,3),np.uint8)
 skinMask = cv2.dilate(skinMask, kernel, iterations = 2)
 skinMask = cv2.GaussianBlur(skinMask, (3, 3), 0)
 skin = cv2.bitwise_and(img, img, mask = skinMask)
 im_gray = cv2.cvtColor(skin,cv2.COLOR_BGR2GRAY)
 (thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY |
cv2.THRESH_OTSU)
 se = np.ones((12,12), dtype='uint8') #Return a new array of given shape and type,
filled with ones. numpy.ones(shape, dtype=None, order='C')[source]
 thresh_open = cv2.morphologyEx(im_bw, cv2.MORPH_OPEN, se)
 thresh_close = cv2.morphologyEx(im_bw, cv2.MORPH_CLOSE, se) #It is
useful in closing small holes inside the foreground objects, or small black points on the object
 im_bw = cv2.dilate(im_bw,kernel, iterations = 3)
 contours, hierarchy =
cv2.findContours(thresh_close,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #Finds

Sign Language to English Text

15

contours in a binary image.retrieves all of the contours and reconstructs a full hierarchy of nested
contours. This full hierarchy is built and shown in the OpenCV contours.c demo.
 areas = []
 largest = 0
 secondlargestcontour = 0
 largestcontour = 0
 for i, j in enumerate(contours):
 area = cv2.arcLength(j, True)
 areas.append(area)
 if area > largest:
 largest = area
 index = i
 if (areas != []):
 new_areas = areas
 max_index = np.argmax(areas)
 cv2.drawContours(img,contours, max_index ,(0,255,0),3)
 cv2.imshow("binary", im_bw)
 cv2.imshow("images", np.hstack([img, skin]))
 print(max_index)
 cnt=contours[max_index]
 new_areas = areas[:max_index] + areas[max_index+1 :]
 second_max_index = np.argmax(new_areas)
 scnd_max_index = 0
 for i, j in enumerate (areas):
 if j == new_areas[second_max_index]:
 scnd_max_index = i
 min_area = areas[scnd_max_index]
 cnt2 = contours[scnd_max_index]

 dic.update({n: cv2.matchShapes(cnt2, contour,
CV_CONTOURS_MATCH_I1, 0.0)})

 for key, value in d.iteritems():
 if min(dic.values()) == dic[key]:
 return i

cap = cv2.VideoCapture(0)

Sign Language to English Text

16

while(cap.isOpened()) :
 firstFrame = None
 max_index = 0
 scnd_max_index = 0
 cnt = None
 ret,img = cap.read()

 imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 blur = cv2.GaussianBlur(imgray,(5,5),0)
 # resize it to (1) reduce detection time
 # and (2) improve detection accuracy
 image = imutils.resize(img, width=min(400, img.shape[1]))
 orig = image.copy()
 if firstFrame is None:
 firstFrame = imgray
 # continue

 converted = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
 skinMask = cv2.inRange(converted, lower, upper)

 kernel = np.ones((3,3),np.uint8)
 skinMask = cv2.dilate(skinMask, kernel, iterations = 2)

 # blur the mask to help remove noise, then apply the
 # mask to the frame

 skinMask = cv2.GaussianBlur(skinMask, (3, 3), 0)
 skin = cv2.bitwise_and(img, img, mask = skinMask)
 im_gray = cv2.cvtColor(skin,cv2.COLOR_BGR2GRAY)
 (thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY |
cv2.THRESH_OTSU)

 se = np.ones((12,12), dtype='uint8') #Return a new array of given shape and type, filled
with ones. numpy.ones(shape, dtype=None, order='C')[source]
 thresh_open = cv2.morphologyEx(im_bw, cv2.MORPH_OPEN, se)
 thresh_close = cv2.morphologyEx(im_bw, cv2.MORPH_CLOSE, se) #It is useful in
closing small holes inside the foreground objects, or small black points on the object

Sign Language to English Text

17

 im_bw = cv2.dilate(im_bw,kernel, iterations = 3)
 contours, hierarchy =
cv2.findContours(thresh_close,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #Finds
contours in a binary image.retrieves all of the contours and reconstructs a full hierarchy of nested
contours. This full hierarchy is built and shown in the OpenCV contours.c demo.
 areas = []
 largest = 0
 secondlargestcontour = 0
 largestcontour = 0
 for i, j in enumerate(contours):
 area = cv2.arcLength(j, True)
 areas.append(area)
 if area > largest:
 largest = area
 index = i
 if (areas != []):
 new_areas = areas
 max_index = np.argmax(areas)
 cv2.drawContours(img,contours, max_index ,(0,255,0),3)
 cv2.imshow("binary", im_bw)
 cv2.imshow("images", np.hstack([img, skin]))
 print(max_index)
 cnt=contours[max_index]
 new_areas = areas[:max_index] + areas[max_index+1 :]
 second_max_index = np.argmax(new_areas)
 scnd_max_index = 0
 for i, j in enumerate (areas):
 if j == new_areas[second_max_index]:
 scnd_max_index = i
 min_area = areas[scnd_max_index]
 # maximum_area = areas[max_index]
 # minimum_area = areas[max_index]/3
 cnt2 = contours[scnd_max_index]
 x,y,w,h = cv2.boundingRect(cnt)
 cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
 (p1,q1), radius1 = cv2.minEnclosingCircle(cnt)
 center1 = (int(p1), int(q1))
 radius1 = int (radius1)
 cv2.circle(img, center1, radius1, (0, 255, 0), 2)
 a,b,c,d = cv2.boundingRect(cnt2)

Sign Language to English Text

18

 cv2.rectangle(img,(a,b),(a+c,b+d),(0,255,0),2)
 (p2,q2), radius2 = cv2.minEnclosingCircle(cnt2)
 center2 = (int(p2), int(q2))
 radius2 = int (radius2)
 cv2.circle(img, center2, radius2, (0, 255, 0), 2)
 cent1 = np.array(center1)
 cent2 = np.array(center2)
 distance = np.linalg.norm(cent1-cent2)
 print("distance = ", distance)
 # compute the absolute difference between the current frame and first frame
 frameDelta = cv2.absdiff(firstFrame, imgray)
 thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
 # dilate the thresholded image to fill in holes, then find contours
 # on thresholded image
 thresh = cv2.dilate(thresh, None, iterations=2)
 (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
 # loop over the contours
 c = None
 for c in cnts:
 # if the contour is too small, ignore it
 if cv2.contourArea(c) < args["min_area"]:
 continue
 # compute the bounding box for the contour, draw it on the frame,
 # and update the text
 if c != None:
 (r, s, t, u) = cv2.boundingRect(c)
 cv2.rectangle(frame, (r, s), (r + t, s + u), (0, 255, 0), 2)
 dotProduct = sum((a*b) for a, b in zip(center1, center2))
 cos = dotProduct/ (np.linalg.norm(cent2)* np.linalg.norm(cent1))
 angle = np.arccos(cos)
 angle = angle * (180 / ((22/7)))
 print("cosine = ", cos)
 print("angle = ", angle)

 m = cv2.moments(cnt2)
 Area = m['m00']
 Perimeter = cv2.arcLength(cnt2,True)
 BoundingBox = cv2.boundingRect(cnt2)
 Centroid = (m['m10']/m['m00'],m['m01']/m['m00'])
 EquivDiameter = np.sqrt(4*Area/np.pi)

Sign Language to English Text

19

 Extent = Area/(BoundingBox[2]*BoundingBox[3])
 ConvexHull = cv2.convexHull(cnt2)
 ConvexArea = cv2.contourArea(ConvexHull)
 Solidity = Area/ConvexArea
 centre,axes,angle2 = cv2.fitEllipse(cnt2)
 MAJ = np.argmax(axes)
 MIN = 1-MAJ
 MajorAxisLength = axes[MAJ]
 MinorAxisLength = axes[MIN]
 ratio = MajorAxisLength/MinorAxisLength
 Eccentricity = np.sqrt(1-(axes[MIN]/axes[MAJ])**2)
 Orientation = angle2
 EllipseCentre = centre
 Parameters = [Perimeter/MinorAxisLength, Extent, ratio, Eccentricity, Solidity,
angle, distance]
 print("Parameters " ,Parameters)

 cv2.waitKey(100/30)

 # if the 'q' key is pressed, stop the loop
 if cv2.waitKey(1) & 0xFF == ord("q"):
 break

 cv2.drawContours(img,contours, max_index ,(0,255,0),3)
 cv2.drawContours(img,contours, scnd_max_index ,(0,0,255),3)
 #c = contours[ind]

 # show the skin in the image along with the mask
 cv2.imshow("binary", im_bw)
 # cv2.imshow("contours", cnt)

 cv2.imshow("images", np.hstack([img, skin]))
 cv2.waitKey(100/30)

 # if the 'q' key is pressed, stop the loop

Sign Language to English Text

20

 if cv2.waitKey(1) & 0xFF == ord("q"):
 break
 # compare(Parameters, cnt2, onlyfiles)

 Welcome1 = [5.430795917066408, 0.5985512771635532, 2.0721788886407637,
0.87584979217091408, 0.8986834573554665, 63.856762487299818, 184.5670609832643]
 Welcome2 = [5.970398357341481, 0.5761633011413521, 2.2514900654859424,
0.89595229018531142, 0.8539362394274561, 48.682292722461796, 155.04837954651444]
 Welcome3 = [7.7432667864466005, 0.6516775396085741, 3.385763570031182,
0.95538777869037417, 0.8870916587377101, 39.454477941643056, 143.33875958721003]
 answer = []
 for i, j in enumerate(Parameters):
 found = [abs(Welcome1[i]-Parameters[i]), abs(Welcome2[i] - Parameters[i])]
 if min(found) == abs(Welcome1[i]-Parameters[i]):
 answer.append(1)
 elif min(found) == abs(Welcome2[i]-Parameters[i]):
 answer.append(2)
 # elif min(found) == abs(Welcome1[i]-Parameters[i]):
 # answer.append(3)

 if all(answer[i] <= answer[i+1] for i in xrange(len(answer)-1)):
 print("the Sign says WELCOME!",)
 print (answer)

cv2.destroyAllWindows()
system.exit()

