EECE401 Senior Design I Electrical and Computer Engineering Howard University Dr. Charles Kim -- Instructor WWW.MWFTR.COM/SD1415.html

Agenda

- Project Relevance & Background
- Problem Formulation
- Current Status of Art
- Implementation Plan
- Cost & Resources
- Deliverables
- Conclusion / Recap

Key Terms

- Field-Programmable Gate Array (FPGA)
- Verilog Hardware Description Language (VHDL)
- Cryptosystem
- Hardware Trojan

Background

- Hardware security is important
 - Medical devices, cellular phones, laptops, etc.
 - FPGAs (field programmable gate arrays)
- Cryptosystems protect data
- Who is trying to access the data? How are they accessing data?
 - Hardware Trojans, ticking time bombs, back-doors

Problem Formulation

How can we develop a system to detect hardware Trojans?

Problem Formulation

The detection system should be:

- Size efficient
 - Appropriate for hospital
- Response time
- User interface / ease of use
- Encryption should meet HIPAA (Health Insurance Portability and Accountability Act) standards

Current Status of Art

• Smart Cards

- Unique ability to store large amounts of data
- Carry out their own oncard functions (e.g., encryption and mutual authentication)
- Interact intelligently with a smart card reader

Current Status of Art

ZigBee Chip

- Embedded system used in medical devices
- Cryptosystem design for long-distance data transmission

Solution Approach

Solution Approach

Implementation & Optimization

Attack the System With Hardware Trojan

Design Detection System

Attack the System & Check

Solution Approaches- Initial Plan

- Side-channel Analysis
 - Device emits certain signals
 - electrical field, magnetic field, etc.
 - Correlates to "device signature"
 - Exploit device signature for detection

Alternative Solutions

- Heat Dissipation Analysis
 - sensor, thermometer
- System Speed Analysis
 - on-screen time
- Physical Inspection Analysis
 - Visual inspection
 - SEM (scan electron microscopy)

Solution Approaches-Top Design Selection Process

	Side- channel Analysis	Heat Dissipation Analysis	System Speed Analysis	Physical Inspection	
Time (5)	5*(8)=40	5*(8)=40	5*(7)=35	5*(6)=30	
Cost (3)	3*(7)=21	3*(6)=18	3*(9)=27	3*(5)=15	
Resources (4)	4*(7)=28	4*(6)=24	4*(7)=28	4*(5)=20	
Longevity (3)	3*(9)=27	3*(9)=27	3*(8)=24	3*(2)=6	
Total	116	109	114	71	

Highest Possible Score: 150 Weight: Scale 1-5 (1 least important, 5 most important) Score: Scale 1-10 (1 least feasible, 10 most feasible)

Implementation & Verification Plan

- Implement cryptographic algorithms in VHDL
- Optimize algorithms
 - Parameters include area overhead, size, speed
- Attack system with Trojan
- Analyze for methods of detection
- Create detection system
- Attack and check

Project Timeline

	2014				2015				
	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
Implement & optimize									
algorithm on FPGA									
Implement hardware Trojan attacks									
Introduce techniques to prevent/detect H/W Trojan attack									

Cost & Resources

- DE2i-150 board
 - Howard University EECE Department (Dr. Kim)
 - ° **~**\$1500
- Xilinx- ISE Design Suite
- Infusion Pump
 o Amazon- \$100

Conclusion/ Recap

- Implement and optimize cryptographic algorithm on FPGA
- Study and attack algorithm with hardware Trojan
 JAVL LIVL IT'S WHAT WE DO
- Develop techniques to detect hardware Trojan

SAVE LIVES IT'S WHAT WE DO

Questions?