
Electrical and Computer Engineering Howard University

EECE401 Senior Design I Dr. Charles Kim -- Instructor WWW.MWFTR.COM/SD1415.html

Sign Language to English

Team SLatE8

Reginald Etienne, Marcos Celestino Carvalho Junior, Sarad Dhungel, Renika Montgomery, Claude Ndzami, Yonatan Yilma.

> Prajjwal Dangal, Roshil Paudyal

Background

Customer:

- Hearing Impaired community in the U.S. (28 million)
- Parents of hearing impaired children
- business
- office
- retail
- ect.

Background

Needs and Demand:

- portable device
- easy to use
- fast response time and accuracy
- long battery life
- helpful
- fastest communication
- ect.



Problem Statement

The core principle of our team project is to build a device that will help to integrate the deaf/mute community more into society by developing a device able to understand, translate, and communicate with a person not knowledgeable with ASL by interpreting ASL into English.

Problem Statement Count'd

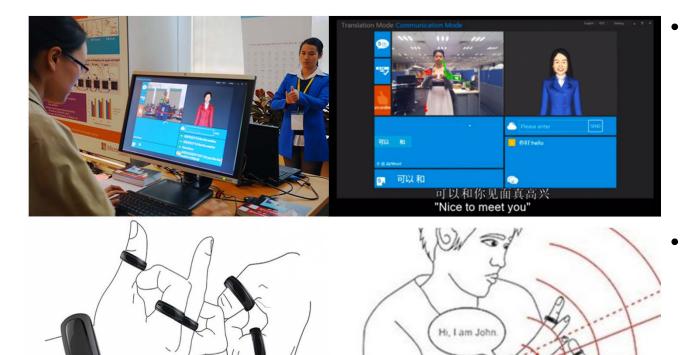
Design Requirements

Internal features: Intel Galileo Board

- ≻Physical Characteristics
- ➤Communication
- ≻Processor Features
- ➤Storage Option
- Constraints:
 - ≻Resources
 - ≻Time
 - ≻System Developments

Design Requirements

•Weight & Size: less than 15 oz, 10x5x2 in.

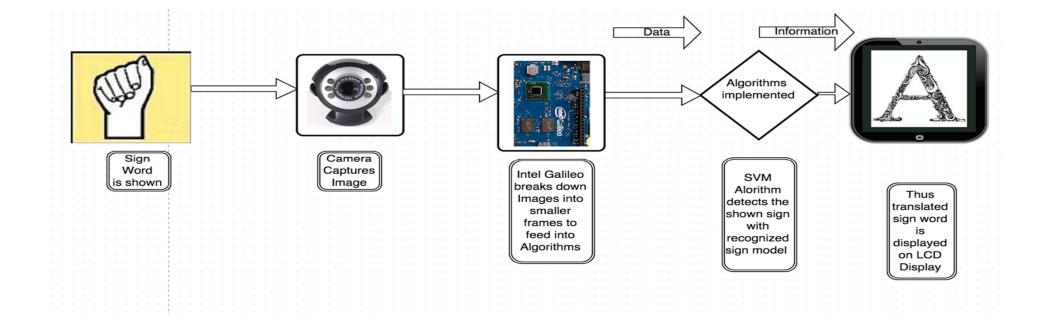

- •Camera: 640x480 bit resolution
- •Sound system: 3.5 mm TRRS, with frequency response range from 20Hz to 20kHz.
- •Display screen: touch screen about 3.5in diagonal of a resolution of 640x480 at 326 ppi (0.61megapixels) with a typical 800:1 contrast ratio.
- •Response time: no more than 30 seconds after the camera captures the picture of sign.
- •Accuracy: are greater than 90% and error are below 5%.

Current Status of Art

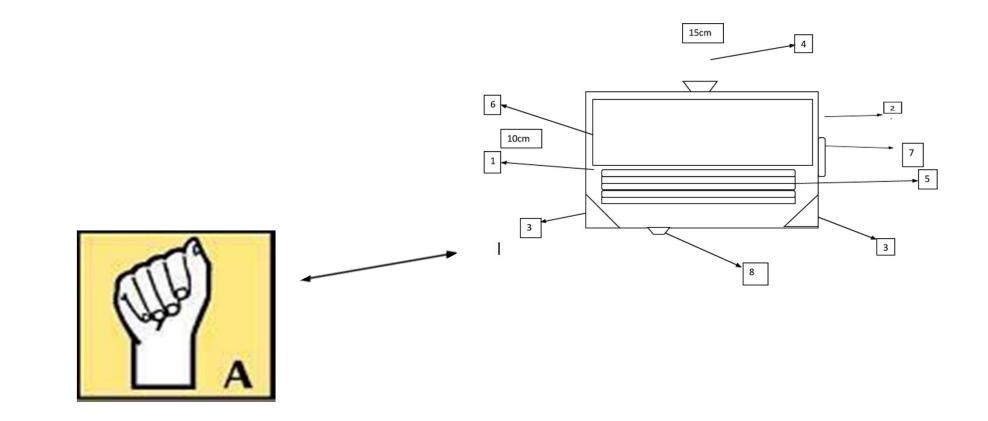
- MyVoice (University of Houston students of engineering technology and industrial design programs)
- EnableTalk gloves translate sign language into speech in real time (Ukraine's quadSquad winners at Microsoft Imagine Cup

Current Status of Art

Kinect Sign Language Translator (Microsoft Asia)


The Sign Language Ring (winner of the 2013 RedDot Design Award)

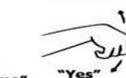
Solution Approach


Design a working prototype which is

- Handheld and Portable
- Efficient and inexpensive means to bridge communication gap
- A fast and efficient method of communication

Solution Approach

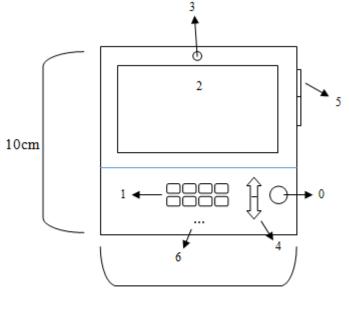
Conceptual Design I


Conceptual Design I

Button	Function	Description
1 – Power Button	ON/OFF	Turn the device off
2 - Speakers	To provide the output	Allows Customers to hear
3 - Camera	Captures images of Sign	Camera captures the video of users gesture and then convert into text
4 - Distance from the Object to the Camera	To read the object capture	To Test the accuracy of the device at different distance that an object is capture
5 - Keyboard	To control the volume	Customer can type in word to know the sign for the word
6 - Screen	Display	Allows Customers to see what sign will look like
7- Volume	To control the volume	To increase or decrease the volume to understand the speaker perfectly.

Conceptual Design II

"Goodbye"

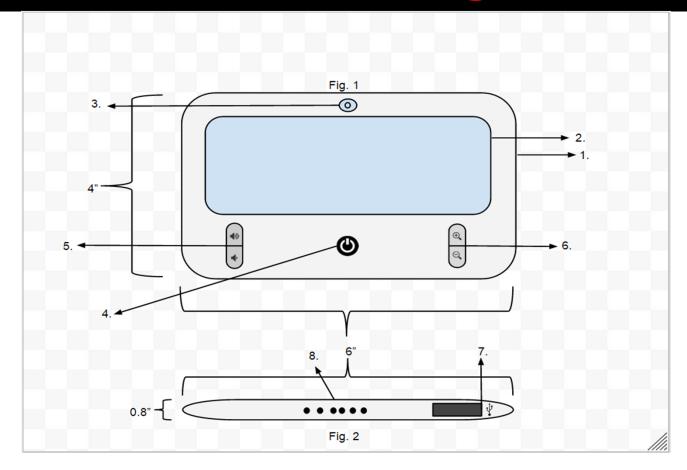

"You're Welcome"

"No"

"Sorry"

"Thanks

10cm


Conceptual Design II

Button	Function	Description
0 - Power	ON/OFF	Turn the device off
1 - Keyboard	To input text into a computer	To help the user to enter data
2 - LCD Screen	To display image on the screen	Produces the visible image on the screen to help the user to read/identify the correct output
3 - Camera	Motion Controller	Camera captures the video of users gesture and then convert into text
4 - Distance from the Object to the Camera	To read the object capture	To Test the accuracy of the device at different distance that an object is capture
5 - Volume	To control the volume	To increase or decrease the volume to understand the speaker perfectly.
6 - Speakers	To provide the output	Responsible to present the output for the translation by sound.

Top Design Selection

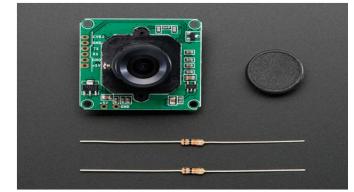
	Conceptual				Conceptual Design		
Attributes	Design I	Weight	Score	Agg. Score		Score	Agg. Score Analysis Method
Speed	100 Mhz/sec	5	4	20	120 Mhz/sec	5	25 Speed of Operation
Responce Time	12 sec	4	4	16	10 sec	5	20 Time in sec
Weight	15 Oz	3	5	15	17 OZ	3	9 weignt in Ibs
Power	AC conveter and USB cable	2	2	4	AC converter and DC Power Connector - 2.5mm I.D 5.5mm O.D	1.5	3 Method of charging
Life	6 Hour usage, 12 Hour Standby	2	5	10	4 Hour Usage, 10 Hour Standby	4	8 Battery Life in time
Screen Size	3.5in diagonally	4	3	12	9.7 in diagnolally	4	16 Size in inches
Screen Type	960x640 at 326 ppi	4	3.5	14	960x640 at 326 ppi	3.5	14 Resolution of screen
Camera	5-megapixel camera embedded in device	5	5	25	4megapixels camera connected Outside	4	20 Capacity in pixels
Video Capture	720p	5	5	25	.6megapixel	4	Capture capability in 20 pixel
Volume Button	2 Buttons for Volume Up and Down	2	2	4	Rotating volume control	1.5	3 Convenience
Dimension	10 X 10 X 2	5	4	20	15 X 10 X 2	5	
Display Screen	6 X 4	5	4	20	12 X 5	5	Size and quality of 25 display
Power Switch	On the the front face of the device	2	2	4	One the right edge of the device	2	4 Convenience
Total		48	48.5	189		47.5	192

Final Design

Final Design

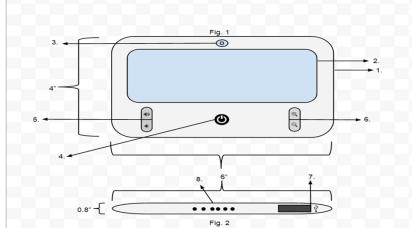
Attributes	Details
Weight	15 ounces (425.5 gm)
Height	4 inch (10.16 cms)
Width	6 inch (15.24 cms)
Depth	0.8 inch (2.03 cms)
Display	2" X 4.75"X 5.15 Screen(Diagonal), 960 X 640 at 326 ppi
Camera	5.1 megapixels
Video	720p Video recording (30-60fps)
Power	AC converter and USB
Battery	Built in rechargeable lithium-ion battery
Speakers	On the bottom middle of the device
Buttons	1-Turn ON/OFF 2- Volume UP/DOWN 2- Zoom IN/OUT (to focus)

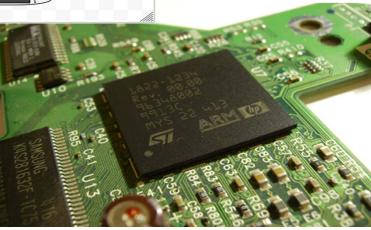
Cost & Resources- 1st prototype



Tablet kit with a 4.4" OLED touchscreen that mounts directly on the Board **\$295**

Cost & Resources- 1st prototype





- Intel Galileo **\$60**
- TTL Serial JPEG
 Camera with NTSC
 Video \$40
- 7"inch fpc3tp70001av2 Black Glass Panel Touch Screen Digitizer \$24
- Anker® 2nd Gen Astro E4 13000mAh External Battery \$30

Cost & Resources- final prototype

Goal: Final product for customer should not cost more than **\$100**.

To fit design parameters some changes maybe required such as ARM Microcontrollers **\$45**

Fabrication cost \$??

Implementation and Verification Plan

Stage 1- Still Image Analysis

Image Processi ng Timeline

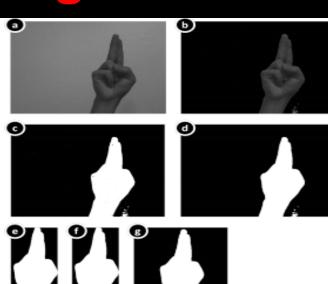
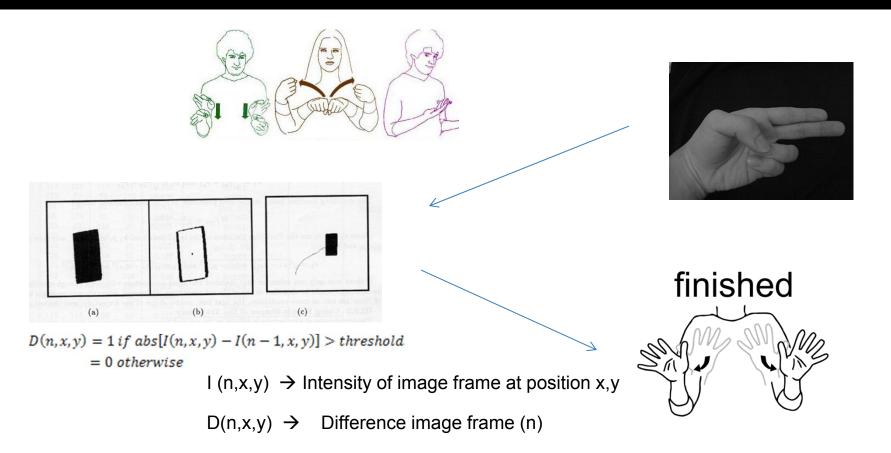
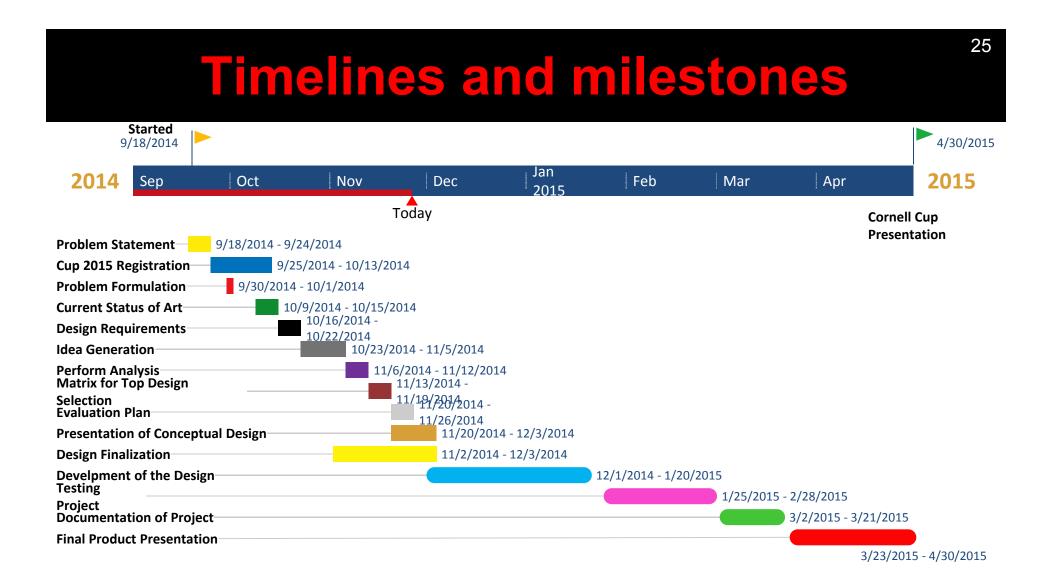


Table 1: Pixel Feature Classification Results

	C.V. accuracy		Test accuracy	
Classifier	12 signs	25 signs	12 signs	25 signs
Linear kernel	97.2%	90.8%	98.6%	92.4%
Gaussian kernel	98.3%	92.4%	98.6%	93.5%
k- nearest- neighbor	N/A	N/A	93.0%	84.8%

20x20px images


*problem with j & z


Classify using linear and Gaussian kernel SVM

Run cross-validations to determine optimal SVM parameters C and 6

- 1. Knight
- 2. Shariff
- 3. Marx
- 4. *Markov

Stage 2- Image Motion Analysis

Conclusion

•SLATE 8 will use all resources available to reach the goal of providing a *portable* and *cost efficient* device that can help the hearing impaired community communicate easier by translating sing language into text/voice.

Questions

