What is Systems Engineering? & What Does a Systems Engineer Do???

Guest Lecture

for Senior Design class **Howard University**

by

Jeffrey Volosin NASA

Systems Engineering

Thomas Edison Invention Factory

The Systems Engineering 'Vee' Decomposition – then - Integration

Time & Project Maturity

NASA Systems Engineering Timeline

SEEKING SIGNS OF PAST LIFE

a cz

CONPLICT RIGOROUS IN-SITU SCIENCE

GEOLOGICALLY DIVERSE SITE

COORDINATED, NESTED CONTEXT AND FINE-SCALE MEASUREMENTS

ASTROBIOLOGY

ENABLE THE FUTURE

RETURNABLE CACHE OF SAMPLES

CRITICAL IN-SITU RESOURCE UTILIZATION AND TECHNOLOGY DEMONSTRATIONS REQUIRED FOR FUTURE MARS EXPLORATION

Mars Rover 2020

NASA Life		FORMUL	ATION App	roval for		IMPLEN	MENTATION	
Cycle Phases	Pre-Systems Acquisition		Imple	System		is Acquisition	Operations	Decommissioning
Project	Pre-Phase A:	Phase A:	Phase B:	Phase B: Phase C: hinary Design & Final Design 8 logy Completion Fabrication		Phase D:	Phase E:	Phase F:
Life Cycle Phases	Concept Studies	Concept & Technology Development	Preliminary Design & Technology Completion			System Assembly, Int & Test, Launch	Operations & Sustainment	Closeout
		· · · · · · · · · · · · · · · · · · ·						

Transiting Exoplanet Survey Satellite	

		im ò la	nentation			
Cycle Phases Pr	e-Systems Acquisition	Inpag	Systen	ns Acquisition	Operations	Decommissioning
Project Pre-Ph Life Cycle Conc Phases Stuc	ase A: Phase A ept Concept & Tec ies Developm	A: Phase B: hnology ent Fechnology Completion	Phase C: Final Design & Fabrication	Phase D: System Assembly, Int & Test, Launch	Phase E: Operations & Sustainment	Phase F: Closeout

Formulation Phase Investment Critical to Managing Cost

NASA Life Cycle Phases	Pre-Systems	FORMUL Acquisition	ATION Appro Implem	entation System	IMPLEN ns Acquisition	MENTATION Operations	Decommissioning
Project Life Cycle Phases	Pre-Phase A: Concept Studies	Phase A: Concept & Technology Development	Phase B: Preliminary Design & Technology Completion	Phase C: Final Design & Fabrication	Phase D: System Assembly, Int & Test, Launch	Phase E: Operations & Sustainment	Phase F: Closeout

NASA Life		FORMUL	ATION Appro	oval for	IMPLEMENTATION				
Cycle Phases	Pre-Systems	Acquisition	Implem	entation System	Systems Acquisition		Decommissioning		
Project Life Cycle Phases	Pre-Phase A: Concept Studies	Phase A: Concept & Technology Development	Phase B: Preliminary Design & Technology Completion	Phase C: Final Design & Fabrication	Phase D: System Assembly, Int & Test, Launch	Phase E: Operations & Sustainment	Phase F: Closeout		

NASA Project Development Times Vary Widely

ATP-PDR = Phase A/B; PDR-CDR = Phase C; CDR-Launch = Phase D $_{20}$

NASA Systems Engineering Processes

- Scope
- Architecture
- Requirements
- Functional Decomposition
- Part Selection
 - Utility Curves
 - Robust Design
- Trade Study
- Contingency & Margin
- Cost Estimating
- Risk Management
- Technology Decisions
- Trade Trees

Scope Dimensions

Goals

Broad, fundamental aim you expect to accomplish to fulfill need.

Objectives

Initiatives that implement the goal.

What is the minimum that the stakeholders expect from the system for it to be successful?

Assumptions

Need

view

Explains why the project is

the stakeholders' point of

developing this system from

Examples: Level of technology Partnerships Extensibility to other missions Scope is a definition of what is germane to your project.

Budgets

Schedules

Authority and Responsibility

Who has authority for aspects of the system development?

Operational Concepts

Imagine the operation of the future system and document the steps of how the end-toend system will be used

Mission

Defining and restricting the missions will aid in identifying requirements

Constraints

External items that cannot be controlled and that must be met, which are identified while defining the scope

Scope Example: Kepler

- Need: Find terrestrial planets, especially those in the habitable zone of their stars, where liquid water and possibly life might exist.
- **Goal:** Discover dozens of Earth-size planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets
- **Objective:** Explore the structure and diversity of planetary systems.
- Mission or business case: Survey a large sample of stars from space

Scope Example: Kepler

Operational Concept: Use a Delta II launch vehicle to place a 0.95m telescope (capable of capturing light from 12th magnitude stars) and photometer having a field-of-view of 105 square degrees (field should include over 100,000 stars – and a sensitivity that would detect the Earth transiting the Sun from a significant distance) in an Earthtrailing solar orbit for a period of 3.5 years (allowing for measuring planet transits over multiple "years"). Point the telescope constantly at the Cygnus-Lyra region (except when downlinking data). Downlink data through the DSN sites, with science data (downlinked monthly) going to the ARC Pipeline facility for processing and engineering data (downlinked twice each week) going to the Mission Operations Center at the University of Colorado. After processing, all data is stored at the Space Telescope Science Institute in MD.

Scope Example: Kepler

- **Assumptions:** There are Earth-sized planets orbiting stars within the chosen FOV that are orbiting edge-on as seen from Earth. Also, that variations seen in the photon count from stars in the FOV can be correlated to orbiting Earth-like planets (versus star-spots or other output variations)
- **Constraints**: Total mass must be below 1,000 kg (to launch on Delta II to required orbit)
- Authority and Responsibility: NASA Science Mission Directorate, Astrophysics Division, Exoplanet Program Office (JPL), Kepler Project Office (ARC), Data Processing Pipeline (ARC), Mission Operations Center (University of Colorado), Data Archive (Space Telescope Institute), Launch (KSC Launch Services Program), Observatory Development (Ball Aerospace)
- **Budget**: \$550M total funding available
- Schedule: Must launch by 2009

Architecture Example: NASA Constellation Program Lunar Sortie Mission (2006)

Functional Decomposition Example NASA Space Science Mission Functional Flow Block Diagram

Functional Decomposition Timeline Example

	Function					H	ou	s			
Number	Name	30	-	25 2	20	15 1	0	5	4	3	2
3.1.1	Provide ground power			-					-		
3.1.2	Provide vehicle air conditioning								1		
3.1.3	Install and connect batteries		2.5	2							
3.1.4	Install ordnance			7.5							
3.1.5	Perform stray voltage checks and connect ordnance				2.6						
3.1.6	Load fuel tanks					7.5			-		
3.1.7	Load oxidizer tanks							7.5			
3.1.8	Activate guidance system							2.5			
3.1.9	Establish propulsion flight pressure						- 23		1.0		
3.1.10	Telemetry system "on"	1									2.5

Example shows the time required to perform function 3.1.

Its sub-functions are presented on a bar chart showing how the timelines relate.

Note: function numbers match the FFBD.

Selecting Parts and Components Utility Curves

- Use performance-resource curves (utility curves) to identify break points.
- "Performance" factors should be defined by requirements and "figures of merit"

Selecting Parts and Components Robust Design

• **Robustness** is a measure of the ability of a system to absorb changes in requirements, constraints or failures while reducing the impacts on the performance, functionality, or composition of the mission or system. Two different design options are shown - one with high performance, one with robust performance.

Resource or operational environment factor

Trade Study Decision Matrix Example

Decision Matrix Example for Battery		Extend Old Battery Life	Buy New Batteries	Collect Experient Data With Alternative Experiment	Cancelled Experiment		
CRITERIA	Mandatory (Y=1/N=0)?	Weight	SCALE				
Mission Success (Get Experiment Data)	1	30	3 = Most Supportive 1 = Least Supportive	2	3	3	0
Cost per Option	0	10	3 = Least Expensive 1 = Most Expensive	1	2	3	1
Risk (Overall Option Risk)	0	15	3 = Least Risk 1 = Most Risk	2	1	2	3
Schedule	0	10	3 = Shortest Schedule 1 = Longest Schedule	3	2	1	3
Safety	1	15	3 = Most Safe 1 = Least Safe	2	1	2	3
Uninterrupted Data Collection	0	20	3 = Most Supportive 1 = Least Supportive	3	1	2	1
WEIGHTED TOTALS in %		100%	3	73%	60%	77%	0%
			,				

Preferred Solution

Contingency & Margin

Contingency Adjustment by Technical Maturity

3

Contingency Adjustments by Mission Phase

	Project Phase	Pre-Phase A	Phase A	Phase B	Phase C
	Weight	25-35%	25-35%	20-30%	15-25%
	Power EOL	25-35%	25-35%	15-20%	15-20%
	Pointing Accuracy	X2	X2	X1.5	X1.5
	Pointing Knowledge	X2	X2	X1.5	X1.5
cal	Pointing Jitter	X3	X3	X2	X2
hņi	Propellant	30-35%	30-35%	20-25%	10-15%
Tec	Data Throughput	30-40%	30-40%	20-30%	15-25%
	Data Storage	40-50%	40-50%	40-50%	30-40%
	RF Link Margin	6 dB	6 dB	6 dB	4 dB
	Torque Factor	X6	X6	X4	X4
	Strength Factor (Ultimate)	2.1	2.1	2.1	1.75
08.	Cost (Including De-Scope Options)	25-35%	25-35%	20-30%	15-20%
Ъ	Schedule	15%	15%	10%	10%

Cost Estimating Techniques

Risk Management Example SOFIA Project

SOFIA Risk Matrix

Rank & Trend	Risk ID	Appr oach	Risk Title
⊏} ¹	DFRC-34	R	Landing Gear Door System Failure
⊏ ⟩2	DFRC-12	Μ	Sched Integration problems structure vs., avionics
}3	DFRC-07	W	Cost growth for engine components
□ ⇒	DFRC-24	Α	Quality Control Resources insufficient
∏ 5	DFRC-01	W	Avionics software behind schedule
∏6	DFRC-11	R	Payload Capacity & Volume Trade-offs design issues
 ⟩7	DFRC-04	R	Limited Flight Envelope, due to technical issues
⊏> ⁸	DFRC-02	R	More flight testing may be required for Soft V&V

Technology Decisions Heritage vs. Advanced Technology

Top-level Trade Tree-Example Human Mars Mission

