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Abstract 

The Smart Signal Detection project addresses a critical need in modern electronic warfare: real-

time classification of radio frequency (RF) signals at the edge. Traditional RF systems rely on 

centralized processing and post-mission analysis, which introduces delays and limitations in 

rapidly evolving environments. Our solution leverages machine learning models deployed on a 

compact Intel NUC device to classify RF signals locally, enabling instant decision-making for 

use cases including battlefield communication, autonomous drones, and CubeSats. 

We implemented a robust pipeline for generating synthetic time-domain signals by combining 

sine, square, and sawtooth waveforms with randomized amplitude and frequency values, and 

added Gaussian noise at multiple levels. Signals were transformed into both time and frequency 

domains and further combined to form hybrid representations. We trained convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and Random Forest classifiers to evaluate 

performance across domains and architectures. The models were tested against conforming and 

nonconforming datasets to evaluate generalization and robustness under noise. Our results 

demonstrate reliable classification with edge-optimized speed and power efficiency. 

Problem Statement 

Modern RF environments demand faster and more adaptive signal intelligence capabilities. 

Ground units, aircraft, and satellites often lack the infrastructure to send data back to centralized 

processing centers in time-sensitive scenarios. This creates a need for AI-powered RF 

classification that runs directly on edge devices. 
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Our objective was to develop a lightweight, real-time signal classification system capable of 

detecting and identifying six distinct waveform classes under varying noise conditions. The 

system must operate autonomously on Intel NUC hardware and maintain accuracy even with 

nonconforming signals it has never encountered during training. 

Design Requirements 

To support edge-based machine learning inference and model testing, our project utilized a 

hardware setup tailored for field-ready AI deployment. The core component was an Intel NUC, 

chosen for its ultra-compact form factor and AI-optimized capabilities. This mini-PC enabled 

local processing of neural networks with minimal power consumption, ideal for edge 

environments. The NUC was powered by a reliable external supply to ensure stable performance 

during extended evaluations and real-world deployment scenarios. A monitor was used to 

provide real-time visualization, aid debugging, and verify system outputs during demonstration 

sessions. Additionally, an HDMI cable was employed to connect the NUC to the display 

interface for seamless monitoring and interaction with the deployed models. 

From a functionality standpoint, the Smart Signal Detection system was designed to achieve 

several key performance objectives. It was required to accurately classify six target waveform 

classes—designated as 11, 12, 13, 22, 32, and 33—each representing a unique combination of 

sine, square, and sawtooth signals. The system needed to maintain high accuracy across various 

levels of Gaussian noise, with standard deviations ranging from 0.001 to 1.0, ensuring robustness 

in noisy environments. To verify the model’s ability to generalize beyond its training set, we 

evaluated performance on nonconforming signal samples that the model had never seen. High 

training and validation accuracy were expected across all noise conditions. Furthermore, the 

system was required to deliver low inference latency to support real-time applications, and all 
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models were deployed to run natively on the Intel NUC using Intel’s OpenVINO toolkit for 

optimized edge inference.

   Figure 1: Shows requirements we used for our project  

Your Solution Design section is mostly strong, well-structured, and communicates the workflow 

effectively. However, to align with formal senior design report expectations (full sentences, no 

bullet-style formatting), and improve clarity and flow, here's an improved version that stays true 

to your structure while polishing it for academic submission: 
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Solution Design 

Our Smart Signal Detection system was engineered to autonomously classify RF signals using a 

custom end-to-end pipeline optimized for edge deployment on the Intel NUC. The system 

follows five key operational stages, beginning with signal generation and ending in real-time 

performance evaluation. 

The signal generation process was implemented in Python and involved synthesizing randomized 

RF signals using combinations of sine, square, and sawtooth waveforms. Each signal comprised 

512 samples and was constructed with random amplitudes ranging from 0.1 to 1.0 and 

frequencies between 100 kHz and 500 kHz. To simulate real-world interference, Gaussian noise 

was added at five levels, ranging from 0 to 1.0 standard deviation. To ensure uniqueness and 

prevent duplicate samples, all signals were hashed using the MD5 algorithm. 

Following generation, each signal was transformed into three domain representations. In the time 

domain, the raw waveform was preserved. For frequency-domain analysis, signals were 

converted using the Fast Fourier Transform (FFT), log-scaled, and normalized. The hybrid 

domain combined both time and frequency signals into a two-channel array of shape (512, 2), 

which enabled multi-modal learning. An example of a hybrid sample combining sine and 

sawtooth waveforms with no noise is shown in Figure 3 below. 

These preprocessed signals were then input into trained neural network models deployed on the 

Intel NUC. The networks were tasked with classifying each signal into one of six waveform 

classes: 11, 12, 13, 22, 32, or 33, which represented distinct combinations of base waveforms. 

All classification occurred locally on the Intel NUC, which utilized the OpenVINO toolkit for 

inference acceleration. This allowed the system to operate autonomously in low-power edge 

environments, without the need for cloud-based processing. By leveraging OpenVINO, we 

reduced inference time while maintaining high classification accuracy. 

Once classification was complete, results were logged and analyzed. This included tracking 

accuracy, inference time in milliseconds per sample, and performance on nonconforming signals 

not seen during training. These benchmarks were used to compare model performance across 

domains and hardware platforms. Figure 2 illustrates the complete system pipeline, from signal 

generation to inference and evaluation. 
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Figure 2: Diagram of Signal Dataset Generation and Processing 

  Figure 3: Example of a Sine+Sawtooth Time Domain Sample with no noise 
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 Figure 4: Example of a Sine+Sawtooth Frequency Domain Sample with no noise 

 

Figure 5: illustrates the full data flow from signal synthesis to classification and analysis: 



Hardware Benchmarking: Why Intel NUC? 

To assess edge-deployment feasibility, we compared training and inference performance across 

two platforms: a MacBook Pro (M1) and an ASUS NUC Pro 14. While the MacBook proved 

effective for development, the NUC was selected as the deployment platform due to several 

operational advantages. 

Benchmarking and Hardware Analysis 

To evaluate model performance across different platforms, we conducted benchmarking on two 

distinct hardware configurations: the MacBook Pro (M1) and the ASUS NUC Pro. Both systems 

supported our machine learning workflows but served different purposes in our project lifecycle. 

The MacBook Pro, powered by Apple’s M1 chip with an integrated 8-core GPU and 8 GB of 

unified memory, offered exceptional performance during model development. It delivered high 

baseline accuracy and faster training times due to its optimized neural engine and Metal 

acceleration. However, its form factor, operating system, and lack of dedicated edge-AI toolkit 

support limited its suitability for deployment in constrained or rugged environments. 

In contrast, the ASUS NUC Pro, equipped with an Intel Core Ultra 7 165H processor and 

integrated Intel Arc GPU, provided a compact and efficient alternative for edge inference. With 

support for up to 48 GB of DDR5 memory and a higher clock speed of 4.8 GHz, the NUC was 

optimized for low-latency, on-device signal classification. It supports AI acceleration through 

Intel’s OpenVINO toolkit and runs on flexible operating systems including Windows, Ubuntu, 

RHEL, and ChromeOS Flex. Its lightweight form factor (1.65 lbs) and small dimensions (117 x 

112 x 37 mm) make it ideal for field use in mission-critical environments. 



While the MacBook served as an effective prototyping and experimentation tool, the Intel NUC 

aligned more closely with our deployment objectives. Its compliance with Size, Weight, Power, 

and Cost (SWaP-C) constraints makes it a viable platform for military, aerospace, and remote 

sensing use cases. In summary, we found the MacBook Pro well-suited for initial model training, 

and the Intel NUC essential for real-world deployment. 

Spec / Feature MacBook Pro (M1) ASUS NUC PRO 

Processor Apple M1 Intel Core Ultra 7 165H 

GPU Integrated 8-core GPU Integrated Intel Arc GPU 

RAM 8 GB unified memory Up to 48 GB DDR5-5600 

Acceleration Apple Neural Engine + Metal OpenVINO Toolkit 

Operating 

System 
macOS Sequoia 15.0.1 

Windows / Ubuntu / RHEL / ChromeOS 

Flex 

Weight 3.4 lbs (1.55 kg) 1.65 lbs (0.75 kg) 

Form Factor Laptop (13-inch) Mini PC (117 x 112 x 37 mm) 

Clock Speed 3.2 GHz 4.8 GHz 

Ports 
USB-C, USB-A, HDMI via 

hub 

2x Thunderbolt 4, 2x HDMI, 4x USB, 

LAN 

 

Figure 6: Comparison of Macbook vs Intel NUC 



Agile Workflow 

To manage development efficiently and ensure iterative progress, we adopted an Agile-based 

sprint model throughout the Smart Signal Detection project. Each sprint focused on a specific 

objective that incrementally advanced the functionality and performance of the final system. 

In Sprint 1, we focused on hardware benchmarking by comparing training and inference speed 

between the MacBook Pro and the Intel NUC. A test image classifier was used to establish a 

performance baseline for both platforms. This informed our deployment strategy by highlighting 

the NUC’s edge-optimized capabilities. 

Sprint 2 concentrated on building the signal synthesizer. We developed a Python-based script to 

generate synthetic RF signals using randomized sine, square, and sawtooth waveform 

combinations. This component was foundational to creating large, diverse datasets for model 

training and evaluation. 

In Sprint 3, we implemented and trained several machine learning models, including 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Random 

Forest classifiers. These models were tested across time-domain, frequency-domain, and hybrid 

signal representations to assess architectural effectiveness. 

Sprint 4 was dedicated to model benchmarking and analysis. We evaluated each model’s training 

accuracy, inference time, and ability to handle noisy and nonconforming signals. Results from 

this phase guided model selection for deployment on the Intel NUC. 

This structured, incremental workflow enabled us to validate each component of the system in 

stages and supported seamless integration and real-time testing throughout development. 
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Sprint Phase Key Deliverables 

Sprint 1: 

Hardware 

Benchmarking 

Benchmarked training and inference speed between MacBook Pro and 

Intel NUC using a test image classifier. 

Sprint 2: Signal 

Synthesizer 

Developed a Python-based script to generate synthetic RF signals 

using sine, square, and sawtooth waveforms. 

Sprint 3: Model 

Development 

Built, trained, and evaluated CNN, RNN, and Random Forest models 

across time, frequency, and hybrid domains. 

Sprint 4: Model 

Benchmarking & 

Analysis 

Conducted detailed benchmarking of all models based on training 

accuracy, inference time, and robustness to noise and nonconforming 

signals. 

Figure 7: Agile Workflow Timeline 

Approach and Tradeoffs 

To evaluate model performance across both architectural design and signal representation, we 

implemented and compared three distinct machine learning approaches: Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), and Random Forest Classifiers (RFs). 

Each model offered unique strengths and tradeoffs that were tested under varying noise 

conditions and signal domains. 

CNNs were used to extract spatial features from 1D RF signals using a series of convolutional 

layers followed by fully connected layers. This architecture proved effective for clean datasets, 



offering fast inference and scalable performance. As shown in Figure 8, the CNN architecture 

incorporated three convolutional layers and two dense layers to classify signals into six 

predefined classes. 

RNNs, specifically those based on Gated Recurrent Units (GRUs), were chosen for their ability 

to capture temporal dependencies in sequential data. These networks demonstrated strong 

performance under noisy conditions, learning structure across time steps even when the signal 

was distorted. The RNN architecture, depicted in Figure 9, relied on stacked GRU layers 

followed by dropout and dense layers for classification. While RNNs provided excellent noise 

robustness, they required more computational resources and exhibited slower inference times 

compared to CNNs. 

In contrast, Random Forest classifiers served as a lightweight, interpretable alternative. Built on 

top of decision trees, these models used handcrafted statistical features such as skewness, 

kurtosis, and energy to classify signals. Figure 10 illustrates the ensemble-based design of the 

Random Forest, which produced extremely fast inference, making it well-suited for constrained 

edge environments. However, its accuracy was slightly lower and highly dependent on the 

quality of feature engineering. 

We also evaluated each model across three signal representations: time-domain, frequency-

domain, and hybrid-domain. Time-domain inputs preserved the raw waveform shape, making 

them ideal for capturing direct amplitude patterns. Frequency-domain inputs, generated via log-

scaled FFT, emphasized spectral characteristics and were particularly useful for identifying 

modulation patterns. Hybrid-domain representations combined both time and frequency vectors 

into a dual-channel (512 × 2) input. This format provided balanced performance and 

demonstrated the best generalization across noise levels and nonconforming signals. 



By leveraging multiple models and signal domains, our system was able to adapt to various 

deployment scenarios, optimizing for speed, accuracy, or noise robustness as required by the 

operational context. 

 

Figure 8: CNN architecture used for signal classification with three convolutional layers and 

two MLP layers. 

 

Figure 9: RNN model used for classifying sequential RF signals with GRU layers capturing 

temporal patterns. 



 

Figure 10: Random Forest ensemble classifier built on top of decision trees and majority voting. 

Absolutely! Here's the finalized version of the Project Implementation Process section 
you can copy and paste right before your Results and Analysis section in your final 
report: 

 

Project Implementation Process 

To implement our Smart Signal Detection system, we followed a structured process built on 

iterative development through Agile sprints. 

We began by building a signal synthesizer that generates synthetic RF signals composed of sine, 

square, and sawtooth waveforms. These signals were augmented with varying levels of Gaussian 

noise and transformed into time, frequency, and hybrid domain representations. 



We then trained three model types — CNN, RNN (GRU-based), and Random Forest classifiers 

— using domain-specific preprocessing pipelines. Each model was tested on clean and noisy 

datasets, as well as unseen (nonconforming) samples. 

To evaluate the performance of each model, we benchmarked training time, inference time, and 

accuracy across devices: the MacBook Pro and the Intel NUC. We recorded how increasing 

training dataset size affected generalization and analyzed performance tradeoffs across the three 

domains (time, frequency, and hybrid). 

Figures 11–16 illustrate key implementation results, such as latency comparisons, noise 

resilience, and architecture performance on different domains. These outcomes guided our final 

deployment strategy on the Intel NUC using OpenVINO for optimized edge inference. 

Results and Analysis: 

Laptop vs. NUC Performance Comparison 

To assess the deployment potential of our Smart Signal Detection system, we benchmarked all 

model types—CNN, RNN, and Random Forest—on three critical metrics: training time, 

inference latency, and classification accuracy across both conforming and nonconforming 

datasets. 

The results revealed a clear tradeoff between development efficiency and operational 

deployment. The MacBook Pro, equipped with a discrete GPU and a higher base clock speed, 

achieved faster training and inference times. This made it highly effective during the 

development phase, where rapid iteration was necessary. However, the Intel NUC consistently 

demonstrated higher classification accuracy, particularly as dataset size increased. 



More importantly, the NUC’s compact design, low power consumption, and compatibility with 

Intel’s OpenVINO toolkit made it the superior platform for edge deployment. Its performance, 

while slightly slower than the MacBook in raw speed, remained well within the bounds required 

for real-time signal classification. 

This distinction highlights a core insight: the MacBook Pro is an excellent tool for prototyping 

and iterative model development in lab settings. In contrast, the Intel NUC is purpose-built for 

field-ready inference, satisfying key constraints related to Size, Weight, Power, and Cost (SWaP-

C)—crucial for military, aerospace, and embedded use cases. 

  

Figure 11: Training Time on the Mac vs NUC 



 

Figure 12: Inference Time on the Mac vs NUC 

 

Figure 13: Training Accuracy on the Mac vs NUC 

Impact of Training Size 

To better understand the influence of training data volume on model performance, we evaluated 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Random 

Forest classifiers using datasets containing 600, 3,000, and 24,000 samples. This experiment 

provided insight into each model's learning capacity and scalability. 



As shown in Figure 14, all models demonstrated improved accuracy as the dataset size increased, 

validating the expected relationship between data volume and model generalization. Random 

Forest classifiers performed unexpectedly well on smaller datasets, achieving over 45% accuracy 

with just 600 samples, likely due to their reliance on statistical feature extraction rather than deep 

pattern learning. 

CNN and RNN architectures displayed more significant gains as the sample size scaled. Both 

models surpassed 70% accuracy when trained on 24,000 samples. RNNs slightly outperformed 

CNNs at higher volumes, showcasing their superior ability to capture sequential and noisy 

patterns, which are characteristic of real-world RF environments. 

These results highlight the importance of sufficient data volume when training deep learning 

models for robust edge-based signal classification. 

Figure 14: Model accuracy 

Accuracy in Noisy Environments: 

To evaluate model robustness under signal degradation, we tested each classifier—CNN, RNN, 

and Random Forest—on datasets embedded with Gaussian noise ranging from 0 to 1.0 standard 



deviation. This evaluation was conducted across all three data representations: Time-Domain, 

Frequency-Domain (FFT), and Hybrid. 

As illustrated in Figure 15, each model displayed varying levels of noise tolerance. CNNs 

performed reliably up to moderate noise levels (σ ≤ 0.1), maintaining stable accuracy across 

domains. However, their performance deteriorated significantly at high noise (σ = 1.0), 

particularly in the frequency domain where distortion heavily affected spatial patterns. 

RNNs exhibited the highest resilience to noise. Their sequential processing architecture, 

especially in GRU-based implementations, enabled the models to retain critical temporal 

features, resulting in stronger performance under heavy distortion. This was especially evident in 

the time and hybrid domains. 

Random Forests, while offering fast inference and interpretability, were most affected by 

increased noise. Their performance declined sharply, with the steepest drop observed in the 

frequency domain. This is likely due to their reliance on statistical features, which become less 

informative in highly corrupted signals. 

These results underscore the fundamental tradeoff between inference efficiency and resilience. 

While CNNs and Random Forests are lightweight and fast, RNNs present a stronger option for 

environments where signal clarity cannot be guaranteed. 



 

 

Figure 15. Accuracy across Gaussian noise levels (0 to 1.0) for CNN, RNN, and Random Forest 

models across Time, Frequency, and Hybrid domains. 

Domain Comparison 

To evaluate the influence of signal representation on model performance, we tested CNNs, 

RNNs, and Random Forest classifiers on a dataset of 24,000 clean samples distributed across 

three domains: Time, Frequency (FFT), and Hybrid. All experiments were conducted on the Intel 

NUC using deployment-ready configurations. 



As illustrated in Figure 16, we analyzed each model's training duration, inference speed, and 

classification accuracy under consistent conditions: 

CNNs delivered strong performance across all domains and achieved the highest overall 

accuracy when trained on frequency-domain (FFT) representations. Their ability to learn spatial 

patterns made them well-suited for both structured time and spectral data. 

RNNs excelled in the time and hybrid domains, leveraging their GRU-based architecture to 

capture sequential dependencies. However, this came at the cost of higher computational 

overhead, as RNNs required longer training cycles and exhibited increased inference latency due 

to their temporal processing. 

Random Forests stood out for their efficiency. They achieved the lowest inference time and were 

easy to interpret, making them ideal for edge applications where resources are constrained. 

Nevertheless, they lagged in classification accuracy, particularly in the frequency domain, where 

their reliance on handcrafted features proved limiting. 

This comparison highlights the tradeoffs between accuracy, speed, and complexity across 

domains and architectures. While CNNs offered a strong balance of speed and accuracy, RNNs 

were more robust to sequence-based variations, and Random Forests prioritized deployment 

efficiency. 



 

Figure 16. Comparison of model performance across Time, Frequency, and Hybrid domains 

using 24,000 clean samples evaluated on the Intel NUC. 



Conclusion 

We successfully developed and demonstrated a scalable, real-time RF signal classification 

system that runs autonomously on edge hardware. By training lightweight neural networks 

across multiple signal domains and noise levels, we built models that are not only accurate but 

resilient—especially under nonconforming and noisy signal conditions. 

Our deployment on the Intel NUC showcased its viability as an edge-AI platform, balancing 

performance with power efficiency and field-readiness. With support for OpenVINO 

acceleration, the NUC proved capable of running real-time inference without reliance on cloud 

infrastructure. 

The Smart Signal Detection system offers broad applicability across defense, aerospace, satellite 

communication, and emergency response scenarios—anywhere rapid signal intelligence is 

required at the edge. 

This project confirms that edge-AI for RF classification is not just technically feasible—it’s 

operationally deployable. 

Future Work 

To further enhance the scalability, robustness, and real-world applicability of the Smart Signal 

Detection system, several key areas have been identified for future development. 

First, expanding the scope of hardware benchmarking is crucial. While the Intel NUC has proven 

viable for edge inference, future work should include comparative evaluation of alternative edge 

platforms such as the NVIDIA Jetson Nano, Google Coral TPU, and ARM-based System-on-

Chips (SoCs). These platforms may offer more favorable tradeoffs in size, power consumption, 

and specialized AI acceleration, depending on the deployment environment. 
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Second, incorporating real-world RF data is essential to improve model generalization and 

operational readiness. By integrating software-defined radios (SDRs), the system can be exposed 

to authentic electromagnetic environments with unpredictable interference patterns, allowing the 

models to be trained and validated on signals beyond the synthetic dataset used in this project. 

Next, continued optimization of model architectures can lead to significant gains in efficiency 

and performance. Future iterations may benefit from exploring attention-based networks, 

transformer architectures, or lightweight CNN variants such as MobileNet. These improvements 

can reduce latency and resource usage while preserving—or even enhancing—classification 

accuracy under varying signal conditions. 

In addition, automating the end-to-end signal analysis workflow will increase system usability 

and operational value. A future iteration of the system should include real-time signal detection, 

autonomous classification, anomaly monitoring, and automated alerting. This would allow for 

seamless deployment in high-risk, time-sensitive applications. 

Finally, expanding operational use cases beyond initial demonstrations will validate the 

versatility of the Smart Signal Detection system. Potential domains include tactical military 

scenarios involving jamming detection, autonomous drone navigation in contested airspace, RF 

communication monitoring during disaster response, and spectrum analysis on low-Earth orbit 

CubeSats. 
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