

SENIOR DESIGN ORAL PRESENTATION

POWER INTEGRITY in Modern Electronics

MEMBERS: Anu Upadhyaya Hridweek Karki Joanne Ukawuilulu Kemar Jordan

ADVISOR Dr. Su Yan

MENTOR Dr. Ramesh Abhari (Apple Inc.)

Why(Background)?

- Failure from high speed electronics leading to fluctuations in voltage in power PDN i.e. increases or decreases of the expected voltage
- Failures can be in the form of a malfunctioning system or suboptimal circuit performance.
- PDN noise can be in the form of switching noise, external electromagnetic interference and unwanted modes.
- We want to ensure power supplied is stable and free from significant fluctuations.
- Ensures device performs optimally.

Problem statement

- Mitigating Power Delivery Network (PDN) noise is essential for efficient power distribution and to ensure proper functioning of electrical systems present in modern electronic devices.
- Our approach is to design a power delivery network for a common circuit found in modern electronic devices and evaluate power integrity for that circuit, then simulate, fabricate, and test PCBs for it.
- Our design ensures proper identification and evaluation of different noises in the power delivery network of the specific circuit thereby resulting in optimal power integrity for the system.
- It's a better evaluated study of the specific circuit with a precise validation system for debugging that will be beneficial to other engineers while incorporating that specific circuit to other complex systems.

Design requirement - Product specifications

Inputs: 3.3 V - 9 V Outputs: 8 mA - 32 mA Oscillating Signal Dimensions: 3 - 9 inch² Operating limit: 10MHz - 10GHz Weight: 0.4 lbs - 0.6 lbs Platform/Hardware: 1) Custom PCB for a Ring Oscillator 2) Custom PCB as a Motherboard for an

FPGA

Design requirement - Constraints

Environmental Constraints

- PCB will be made partially of copper as it can be reused even when the device has stopped operating.
- PCBs are free from hazardous materials, making them safer for consumers and reducing environmental contamination (RoHS)

Socio-cultural Constraints

- Documentation for users to be available in various languages to account for different cultures and backgrounds
- PCBs will be color-coded by considering the market requirements and user needs. For eg : Apple prefers black colored PCBs.

Design requirement - Constraints

Compliance (Rules, Regulations, and Standards)

- Electromagnetic Compatibility Compliance (EMC)
- Electronics Standard set by IEEE
- Underwriters Laboratories Certification
- RoHS Compliance (Restriction of Hazardous Substances Directive)

Possible Solutions Design

Solution 1: Power Delivery Network with only IC load

Solution 2: Power Delivery Network with Decoupling Capacitors:

Possible Solutions Designs

Solution 3: Power Delivery Network with Ring Oscillators

Selection of Top Design

	Wt	Design 1	Score	Agg Score	Design 2	Score	Agg Score	Design 3	Score	Agg Score
Size/weight	1	A simple PCB with a Power Source, a voltage regulator, and an IC.	5	5	A PCB with a power source, a voltage regulator, decoupling, and bulk capacitors	4	4	A PCB with a Power Source, a Voltage Regulator, fewer decoupling and bulk capacitors, and additional Ring Oscillators	3	3
Noise Mitigation	4	Highly susceptible to noise.	1	4	Better PDN Noise Mitigation	4	16	Best design for PDN noise mitigation	5	20
LF /HF Functionality	3	Works properly with LF devices	1	3	Works well with HF as well as LF models.	5	15	Works the best with all the HF and LF designs	5	15
Power Consumption	2	Fewer components to be powered	5	10	The additional capacitors consume more power.	3	6	More components that consume power	4	8
Ease of implementation	5	Can be designed easily	5	25	Easy to design	4	20	Harder to implement because of the addition of the Ring Oscillators	1	5
Total	15			47/65			61/65			51/65

9

Top Design Solution - Block Diagram

- The Functional Block Diagram of our final system.
 - Voltage Source DC Power Source
 - VRM Maintain a stepped down constant voltage output
 - PDN Two port Transmission Line
 - Load Ring Oscillator that draws fluctuating voltage
 - Voltage Measurement Circuit Oscilloscope/Voltage Network Analyzer
- A ring oscillator is a device composed of an odd number of NOT gates in a ring, whose output oscillates between two voltage levels, representing true and false.

First Order Power/Ground Plane Model

• Two port network considering parasitics and lumped RLC models for all parts of the final design.

Component Model

J1 - Barrel Jack Connection to Battery Pack Module

U1, U2 - Inverters for Ring Oscillator

Trigger for Ring Oscillator

S1 - Reset Button for the Ring Oscillator

Capacitors

C4 - Input Capacitor to the VRM

C6 - Decoupling Capacitor

Bypass Capacitor for the VRM

U4 - Voltage Regulator

U3A - NAND gate -

C1, C2, C3 - Load

Component Level Selection - Load

1) Inverter / NOT gate x2					
THT 6 Circuit Package	SMD 1 Circuit Package				
 Excess NOT gates on the same package that can add unused components or unnecessarily consume power More vulnerable to cross-talk and interference as there are multiple circuits within the same package Difficult in testing the circuit as limited access to intermediate paths THT, generally, has more parasitic inductance and capacitance than SMD 	 Can precisely choose the right amount of inverters needed with no unused components in the circuit One circuit in one package spaces out the different NOT gates More accessible testing as each part is separated and the circuit could be organized for testing as required SMD, being closer to the PCB surface, have lower parasitic inductance and capacitance compared to THT 				
Final Selection: SMD 1 Circuit Package					

Component Level Selection - Load

1) NAND gate x1				
THT 8 Input Package	SMD 2 Input Package			
 Gate with excess number of inputs, all alternatives in THT packaging had extra inputs THT, generally, has more parasitic inductance and capacitance than SMD 	 Right number of input gates SMD, being closer to the PCB surface, have lower parasitic inductance and capacitance compared to THT 			
Final Selection: SMD 2 Input Package				
2)	Capacitors			
Thorugh Hole Technology	Surface Mount Device			
THT, generally, has more parasitic inductance and capacitance than SMD SMD, being closer to the PCB surface, have lower parasitic inductance and capacitance compared to THT				
Final Selection: SMD Device				
3) Resistors				
Final Selection: THT Resistors due to availability and ease of assembly				

Component Level Selection - Voltage

	Voltage Source 201					
Requirements	Components and Alternatives	Description and comparison				
1)Power Source:	a) Battery Source	• 4 AA batteries, each labeled to be 1.5V.				
Output: 5V	b) USB	USB connected to power source eg: laptops.				
Final selection:	a) Battery Source	Portable Power Source and closer to real life constraints				
2)Battery holder	Battery Holder in case of a)	A battery holder for stable power connection.				

Component Level Selection - Voltage

	Voltag	e Regulator Module (VRM) 202		
Requireme nts	Components and alternatives	Description and Comparison	Purchasing	QTY
1)VRM: Input = 5V Output = 1.8V	a) THT	• Through Hole VRM part which is easier to solder to the PCB, to regulate the voltage supplied to the PCB.	<u>THT VRM</u>	1
	b) SMD	• Surface mount VRM part which reduces the inductance in the power distribution network.	<u>SMD VRM</u>	1
Final Selection:	b) SMD	Reduces the impedance in the PDN essential to reduce the noise.	<u>SMD VRM</u>	1
2) Bulk Capacitors: C= 1uF	SMD in case of b)	• Recommended with use of SMD in the datasheet, also used as a bulk capacitor.	<u>VRM</u> <u>Capacitor</u>	2

Power Delivery Network (PDN) 203					
Requirements	Components and Alternatives	Description and Comparison	Purchasing Link	QTY	
1)Decoupling Capacitors: A range of values for C.	SMD	• SMD capacitors reduce inductance path acting as a better decoupling capacitor.	<u>0.1 uF</u> <u>3300 pF</u> <u>2 pF</u>	3	
	тнт	• THT capacitors with variable values to test the effects on the PDN	<u>0.1 uF</u> <u>3300 pF</u> <u>2pF</u>	3	
Final Selection:	SMD	SMDs are smaller in size and are better to use as decap.	<u>0.1 uF</u> <u>3300 pF</u> <u>2 pF</u>	3	

2) Oscilloscope Range: 1MHz- 100MHz	Model 1	 An oscilloscope available at the school lab. 		1
	Model 2	• A portable oscilloscope with 50Mhz range and a built in Multimeter.	<u>Multimeter+Os</u> <u>cilloscope</u>	1
Final Selection:	Model 1	Easily accessible to us at the CEA EE/CPE labs and more economical.		1

3) Vector Network Analyzer(VNA)	Model 1	 A device used to measure and view the S- parameters in the two port network. Is more economical. 	<u>10Khz-1.5GHZ</u>	1
	Model 2	• A device which can be used as both signal generator and VNA with the range of 100KHz to 5.3 GHz.	<u>VNA+Signal</u> <u>Generator</u>	1
Final Selection:	Model 1	It provides essential functions and is economical.	10Khz-1.5GHZ	1

4) Multimeter	Model 1	 Easily accessible to us at the CEA EE/CPE labs Is to be used to measure V and I throughout the PDN, to calculate Power Noise. 		1
	Model 2	 Portable multimeter, easy to read. 	<u>Portable</u> <u>Multimeter</u>	1
Final Selection:	Model 1	Economical and easily accessible, we also have required device usage training		1

Development Lifeccyle:

Upskilling Efforts in ANSYS

Upskilling Efforts in ANSYS(Admittance vs f)

Future/ Next Steps

- Build out complete circuit digital in LTSPICE and do PCB layout in KICAD.
- Do simulations to monitor how voltage and power fluctuates across different components in LTSPICE.
- Use KICAD to build an optimized PCB layout.
- Can import netlist from LTSPICE into KICAD then import PCB design into ANSYS to discover Electromagnetic radiation and interference.
- Receive feedback and reimplement for the second candidate circuit

Conclusion

- Voltage Fluctuation can render circuits to not function properly
- Address this issue with mitigation statistics
- Two Candidate Circuits to Emulate:
 - Ring Oscillator to emulate the IC switching implications
 - FPGA as a backup platform programmed to perform a simple ALU/Memory Function
- PDN Modelling through circuit and electromagnetic simulation
- Designing candidate circuits to showcase the IC switching and thereby the di/dt noise phenomenon on PDN
- Create the PCB layout with additional junctions and pads for experimentation and testing
- Top Design Solution: 6V DC Input to 140 MHz 0.5 GHz oscillating signal
- Final product could be integrated to other complex systems

THANK YOU!!!

